Những câu hỏi liên quan
HC
Xem chi tiết
NT
16 tháng 11 2022 lúc 23:05

Đặt \(\sqrt{7+3x}=a;\sqrt{13-3x}=b\)

=>a+b+5ab=46

=>(a+b)^2=46-5ab

=>a^2+b^2+2ab=2116-460ab+25a^2b^2

=>25a^2b^2-460ab+2116=7+3x+13-3x+2ab

=>25a^2b^2-462ab+2096=0

=>\(\left[{}\begin{matrix}ab=\dfrac{262}{25}\\ab=8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left(7+3x\right)\cdot\left(13-3x\right)=109.8304\\\left(7+3x\right)\left(13-3x\right)=64\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}91-21x+39x-9x^2=109.8304\\91-21x+39x-9x^2=64\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-9x^2+18x-18.8304=0\\-9x^2+18x+27=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

Bình luận (0)
BK
Xem chi tiết
TA
1 tháng 11 2019 lúc 21:54

\(\left(\sqrt{7+3x}-4\right)+\left(\sqrt{13-3x}-2\right)+5.\left(\sqrt{\left(7+3x\right)\left(13-3x\right)}-8\right)=0\)

=) \(\frac{7+3x-16}{\sqrt{7+3x}+4}+\frac{13-3x-4}{\sqrt{13-3x}+2}+5.\left(\sqrt{91+18x-9x^2}-8\right)=0\)

=) \(\frac{3\left(x-3\right)}{\sqrt{7+3x}+4}+\frac{3\left(3-x\right)}{\sqrt{13-3x}+2}+\frac{5\left(27+18x-9x^2\right)}{\sqrt{91+18x-9x^2}+8}=0\)

=) \(\frac{3\left(x-3\right)}{\sqrt{7+3x}+4}-\frac{3\left(x-3\right)}{\sqrt{13-3x}+2}-\frac{45\left(x+1\right)\left(x-3\right)}{\sqrt{91+18x-9x^2}+8}=0\)

=) đến đây chắc là tự làm đc rồi

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
H24
4 tháng 11 2018 lúc 7:26

a) \(x^2+8=3\sqrt{x^3+8}\)

\(\left(x^2+8\right)^2=\left(3\sqrt{x^2+8}\right)^2\)

\(x^4+16x^2+64=9x^2+72\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

Bình luận (0)
H24
Xem chi tiết
SK
Xem chi tiết
KN
Xem chi tiết
NV
Xem chi tiết
NV
Xem chi tiết
NL
21 tháng 7 2021 lúc 12:16

c.

\(\Leftrightarrow x^2+3-\left(3x+1\right)\sqrt{x^2+3}+2x^2+2x=0\)

Đặt \(\sqrt{x^2+3}=t>0\)

\(\Rightarrow t^2-\left(3x+1\right)t+2x^2+2x=0\)

\(\Delta=\left(3x+1\right)^2-4\left(2x^2+2x\right)=\left(x-1\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{3x+1-x+1}{2}=x+1\\t=\dfrac{3x+1+x-1}{2}=2x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+3}=x+1\left(x\ge-1\right)\\\sqrt{x^2+3}=2x\left(x\ge0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+3=x^2+2x+1\left(x\ge-1\right)\\x^2+3=4x^2\left(x\ge0\right)\end{matrix}\right.\)

\(\Leftrightarrow x=1\)

Bình luận (0)
NL
21 tháng 7 2021 lúc 12:13

a.

Đề bài ko chính xác, pt này ko giải được

b.

ĐKXĐ: \(x\ge-\dfrac{7}{2}\)

\(2x+7-\left(2x+7\right)\sqrt{2x+7}+x^2+7x=0\)

Đặt \(\sqrt{2x+7}=t\ge0\)

\(\Rightarrow t^2-\left(2x+7\right)t+x^2+7x=0\)

\(\Delta=\left(2x+7\right)^2-4\left(x^2+7x\right)=49\)

\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{2x+7-7}{2}=x\\t=\dfrac{2x+7+7}{2}=x+7\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x+7}=x\left(x\ge0\right)\\\sqrt{2x+7}=x+7\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-7=0\left(x\ge0\right)\\x^2+12x+42=0\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow x=1+2\sqrt{2}\)

Bình luận (0)
H24
Xem chi tiết
TM
21 tháng 9 2023 lúc 21:26

(a) Phương trình tương đương: \(\left|2x-5\right|=7\)

\(\Rightarrow\left[{}\begin{matrix}2x-5=7\\2x-5=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-1\end{matrix}\right.\).

Vậy: \(S=\left\{-1;6\right\}\)

 

(b) Điều kiện: \(x\ge0\).

Phương trình tương đương: \(\sqrt{3x}-2\sqrt{3x}=3\sqrt{3}-4\sqrt{3}\)

\(\Leftrightarrow\sqrt{3}\left(\sqrt{x}-2\sqrt{x}\right)=-\sqrt{3}\)

\(\Leftrightarrow\sqrt{x}-2\sqrt{x}=-1\)

\(\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\left(TM\right)\).

Vậy: \(S=\left\{1\right\}\)

Bình luận (0)