\(\Delta ABCdeu,canhlaa.tinh\left|2\overrightarrow{AB}+\overrightarrow{AC}\right|\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho \(\Delta ABC\), CMR :
\(S_{\Delta ABC}=\frac{1}{2}\sqrt{\overrightarrow{AB^2}.\overrightarrow{AC^2}-\left(\overrightarrow{AB}.\overrightarrow{AC}\right)^2}\)
Cho \(\Delta ABC\), tìm điểm M thỏa mãn điều kiện: \(\left|\overrightarrow{MA}-\overrightarrow{CA}\right|=\left|\overrightarrow{AC}-\overrightarrow{AB}\right|\)
Can u help me???
please, luv u (tymtymtym)
+)\(\left|\overrightarrow{MA}-\overrightarrow{CA}\right|=\left|\overrightarrow{MC}\right|\)
+)\(\left|\overrightarrow{AC}-\overrightarrow{BC}\right|=\left| \overrightarrow{AB}\right|\)
=>MC=AB
=> từ đỉnh C của tam giá ABC lấy điểm M tm MC=AB
bài 1
cho \(\Delta ABC\) nội tiếp đường tròn tâm O, H là trực tâm, D đối xứng với A qua O
a. chứng minh tứ giác HCDB là hình bình hành
b chứng minh: \(\overrightarrow{HA}+\overrightarrow{HD}=2\overrightarrow{HO};\overrightarrow{HA}+\overrightarrow{HB}+\overrightarrow{HC}=2\overrightarrow{HO}\);\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OH}\)
c.Gọi G là trọng tâm của \(\Delta ABC\). Chứng minh \(\overrightarrow{OH}=3\overrightarrow{OG}\). Từ đó kết luận gì về 3 điểm G, O, H
bài 2
\(\Delta ABC\) là tam giác gì nếu nó thỏa mãn một trong các điều kiện sau
a.\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\left|\overrightarrow{AB}-\overrightarrow{AC}\right|\)
b. \(\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\perp\left(\overrightarrow{AB}+\overrightarrow{CA}\right)\)
Cho tam giác đều ABC cạnh a. Tìm khẳng đinh đúng
A.\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=a\) B.\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=a\sqrt{3}\)
C.\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=a\sqrt{3}\) D.\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=2a\)
E thấy người ta giải mà chỗ này e không hiểu. Mọi người giải thích giúp e ạ.
Vì AH=(BC.1/2)tan60 ct lương giác
=BC.tan60.1/2=\(\sqrt{3}\)/2
họk tốt!
Cho tam giác ABC vuông tại A có \(\widehat{B}\)=60độ, BC=2cm. Tính \(\left|\overrightarrow{AB}\right|,\left|\overrightarrow{AC}\right|,\left|\overrightarrow{AB}+\overrightarrow{AC}\right|,\left|\overrightarrow{AB}-\overrightarrow{AC}\right|?\)
Lời giải:
\(|\overrightarrow{AB}|=BC\cos B=2.\cos 60^0=1\) (cm)
\(|\overrightarrow{AC}|=BC\sin B=2.\sin 60^0=\sqrt{3}\) (cm)
------------------
Do tam giác $ABC$ vuông tại $A$ nên $\overrightarrow{AB}\perp \overrightarrow{AC}\Rightarrow \overrightarrow{AB}.\overrightarrow{AC}=0$. Do đó:
\(|\overrightarrow{AB}+\overrightarrow{AC}|^2=(\overrightarrow{AB}+\overrightarrow{AC})^2=AB^2+AC^2+2\overrightarrow{AB}.\overrightarrow{AC}\)
\(=BC^2+0=BC^2=4\) (cm)
$\Rightarrow |\overrightarrow{AB}+\overrightarrow{AC}|=2$ (cm)
Tương tự:
\(|\overrightarrow{AB}-\overrightarrow{AC}|^2=AB^2+AC^2-2\overrightarrow{AB}.\overrightarrow{AC}=AB^2+AC^2=BC^2=4\)
$\Rightarrow |\overrightarrow{AB}-\overrightarrow{AC}|=2$ (cm)
Lời giải:
\(|\overrightarrow{AB}|=BC\cos B=2.\cos 60^0=1\) (cm)
\(|\overrightarrow{AC}|=BC\sin B=2.\sin 60^0=\sqrt{3}\) (cm)
------------------
Do tam giác $ABC$ vuông tại $A$ nên $\overrightarrow{AB}\perp \overrightarrow{AC}\Rightarrow \overrightarrow{AB}.\overrightarrow{AC}=0$. Do đó:
\(|\overrightarrow{AB}+\overrightarrow{AC}|^2=(\overrightarrow{AB}+\overrightarrow{AC})^2=AB^2+AC^2+2\overrightarrow{AB}.\overrightarrow{AC}\)
\(=BC^2+0=BC^2=4\) (cm)
$\Rightarrow |\overrightarrow{AB}+\overrightarrow{AC}|=2$ (cm)
Tương tự:
\(|\overrightarrow{AB}-\overrightarrow{AC}|^2=AB^2+AC^2-2\overrightarrow{AB}.\overrightarrow{AC}=AB^2+AC^2=BC^2=4\)
$\Rightarrow |\overrightarrow{AB}-\overrightarrow{AC}|=2$ (cm)
cho tam giác ABC vuông tại A, biết AB=3a, AC=4a. Tập hợp các điểm M thỏa mãn
a) \(\left|3\overrightarrow{MA}-\overrightarrow{MC}\right|=\left|\overrightarrow{BC}-2\overrightarrow{AB}\right|\)
b) \(2\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=3\left|\overrightarrow{BA}-2\overrightarrow{AC}\right|\)
Cho tam giác ABC . CMR :
\(S=\dfrac{1}{2}\sqrt{\overrightarrow{AB^2}\overrightarrow{AC^2}-\left(\overrightarrow{AB}\overrightarrow{AC}\right)^2}\)
Ta có : \(\dfrac{1}{2}\sqrt{\overrightarrow{AB}^2\overrightarrow{AC}^2-\left(\overrightarrow{AB}.\overrightarrow{AC}\right)^2}\)
\(=\dfrac{1}{2}.\sqrt{AB^2AC^2-\left(AB.AC.CosBAC\right)^2}\)
\(=\dfrac{1}{2}.\sqrt{AB^2AC^2-AB^2.AC^2.Cos^2BAC}\)
\(=\dfrac{1}{2}\sqrt{AB^2AC^2\left(1-Cos^2BAC\right)}\)
Thấy : \(Sin^2a+Cos^2a=1\)
\(\Rightarrow Sin^2a=1-Cos^2a\)
\(\Rightarrow\dfrac{1}{2}\sqrt{AB^2AC^2Sin^2BAC}=\dfrac{1}{2}\left|AB.AC.SinBAC\right|=\dfrac{1}{2}AB.AC.SinBAC=S\)
=> ĐPCM
Sao đề là lạ đoạn kia là \(\left(\overrightarrow{AB}.\overrightarrow{AC}\right)^2\)à
cho tam giác ABC vuông tại A và B = 30o .Tính các giá trị của biểu thức sau:
a) \(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)+\sin\left(\overrightarrow{BA},\overrightarrow{BC}\right)+\tan\frac{\left(\overrightarrow{AC},\overrightarrow{CB}\right)}{2}\)
B) \(\sin\left(\overrightarrow{AB},\overrightarrow{AC}\right)+\cos\left(\overrightarrow{BC},\overrightarrow{BA}\right)+\cos\overrightarrow{CA},\overrightarrow{BA}\)
Do tam giác ABC vuông tại A và \(\widehat{B}=30^o\) \(\Rightarrow C=60^o\)
\(\Rightarrow\left(\overrightarrow{AB},\overrightarrow{BC}\right)=150^o;\)\(\left(\overrightarrow{BA},\overrightarrow{BC}\right)=30^o;\left(\overrightarrow{AC},\overrightarrow{CB}\right)=120^o\)
\(\left(\overrightarrow{AB},\overrightarrow{AC}\right)=90^o;\left(\overrightarrow{BC},\overrightarrow{BA}\right)=30^o\).Do vậy:
a) \(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)+\sin\left(\overrightarrow{BA},\overrightarrow{BC}\right)+\tan\frac{\left(\overrightarrow{AC},\overrightarrow{CB}\right)}{2}\)
\(=\cos150^o+\sin30^o+\tan60^o\)
\(=-\frac{\sqrt{3}}{2}+\frac{1}{2}+\sqrt{3}\)
\(=\frac{\sqrt{3}+1}{2}\)
b) \(\sin\left(\overrightarrow{AB},\overrightarrow{AC}\right)+\cos\left(\overrightarrow{BC},\overrightarrow{AB}\right)+\cos\left(\overrightarrow{CA},\overrightarrow{BA}\right)\)
\(=\sin90^o+\cos30^o+\cos0^o\)
\(=1+\frac{\sqrt{3}}{2}\)
\(=\frac{2+\sqrt{3}}{2}\)
Cho tam giác ABC. Chứng minh rằng:
a) \(S_{\Delta ABC}=\dfrac{1}{2}\sqrt{AB^2.AC^2-\left(\overrightarrow{AB}.\overrightarrow{AC}\right)^2}\)
b) \(b+c=2a\Leftrightarrow\dfrac{2}{h_a}=\dfrac{1}{h_b}+\dfrac{1}{h_c}\)
c) Góc A vuông \(\Leftrightarrow m_b^2+m_c^2=5m_a^2\)