Rút gọn biểu thức : \(x\sqrt{2x+2}+\left(x+1\right)\sqrt{\dfrac{2}{x+1}}-4\sqrt{\dfrac{x+1}{2}}\)
Câu 1: Rút gọn biểu thức: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{2}}+\dfrac{6}{x+3\sqrt{x}}\right)\) với x > 0
Câu 2: Rút gọn biểu thức:
\(P=\dfrac{x\sqrt{2}}{2\sqrt{x}+x\sqrt{2}}+\dfrac{\sqrt{2x}-2}{x-2}\) với x > 0; x \(\ne\) 2
Câu 3: Rút gọn biểu thức:
\(Q=\left(\dfrac{a}{a-2\sqrt{a}}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{a-4\sqrt{a}+4}\) với a > 0; a \(\ne\) 4
Câu 1:
Sửa đề: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)
Ta có: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)
\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}+3\right)}+\dfrac{1}{\sqrt{x}+3}\right):\left(\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}:\dfrac{x+3\sqrt{x}-2\sqrt{x}-6+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x+\sqrt{x}}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=1\)
Câu 3:
Ta có: \(Q=\left(\dfrac{a}{a-2\sqrt{a}}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{a-4\sqrt{a}+4}\)
\(=\left(\dfrac{a}{\sqrt{a}\left(\sqrt{a}-2\right)}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-2\right)^2}\)
\(=\dfrac{a+\sqrt{a}}{\sqrt{a}-2}\cdot\dfrac{\sqrt{a}-2}{\sqrt{a}+1}\cdot\dfrac{\sqrt{a}-2}{1}\)
\(=\sqrt{a}\left(\sqrt{a}-2\right)\)
\(=a-2\sqrt{a}\)
cho biểu thức P=\(\left(\dfrac{1}{\sqrt{x}-\sqrt{x-1}}-\dfrac{x-3}{\sqrt{x-1}-\sqrt{2}}\right)\left(\dfrac{2}{\sqrt{2}-\sqrt{x}}-\dfrac{\sqrt{x}+\sqrt{2}}{\sqrt{2x}-x}\right)\)
a,rút gọn biểu thức
b,tính giá trị của biểu thức với x=3 - \(2\sqrt{2}\)
a) Ta có: \(P=\left(\dfrac{1}{\sqrt{x}-\sqrt{x-1}}-\dfrac{x-3}{\sqrt{x-1}-\sqrt{2}}\right)\left(\dfrac{2}{\sqrt{2}-\sqrt{x}}-\dfrac{\sqrt{x}+\sqrt{2}}{\sqrt{2x}-x}\right)\)
\(=\left(\dfrac{\sqrt{x}+\sqrt{x-1}}{x-\left(x-1\right)}-\dfrac{\left(\sqrt{x-1}-\sqrt{2}\right)\left(\sqrt{x-1}+\sqrt{2}\right)}{\sqrt{x-1}-\sqrt{2}}\right)\cdot\left(\dfrac{2}{\sqrt{2}-\sqrt{x}}-\dfrac{\sqrt{x}+\sqrt{2}}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}\right)\)
\(=\left(\sqrt{x}+\sqrt{x-1}-\sqrt{x-1}-\sqrt{2}\right)\cdot\left(\dfrac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}-\dfrac{\sqrt{x}+\sqrt{2}}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}\right)\)
\(=\left(\sqrt{x}-\sqrt{2}\right)\cdot\dfrac{2\sqrt{x}-\sqrt{x}-\sqrt{2}}{-\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\left(\sqrt{x}-\sqrt{2}\right)\cdot\dfrac{\sqrt{x}-\sqrt{2}}{-\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{2}-\sqrt{x}}{\sqrt{x}}\)
b) Ta có: \(x=3-2\sqrt{2}\)
\(=2-2\cdot\sqrt{2}\cdot1+1\)
\(=\left(\sqrt{2}-1\right)^2\)
Thay \(x=\left(\sqrt{2}-1\right)^2\) vào biểu thức \(P=\dfrac{\sqrt{2}-\sqrt{x}}{\sqrt{x}}\), ta được:
\(P=\dfrac{\sqrt{2}-\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{\left(\sqrt{2}-1\right)^2}}\)
\(=\dfrac{\sqrt{2}-\left(\sqrt{2}-1\right)}{\sqrt{2}-1}\)
\(=\dfrac{\sqrt{2}-\sqrt{2}+1}{\sqrt{2}-1}\)
\(=\dfrac{1}{\sqrt{2}-1}\)
\(=\sqrt{2}+1\)
Vậy: Khi \(x=3-2\sqrt{2}\) thì \(P=\sqrt{2}+1\)
Rút gọn biểu thức:
1, \(B=\left(\dfrac{x.\sqrt{x}+x+\sqrt{x}}{x.\sqrt{x}-1}-\dfrac{\sqrt{x}+3}{1-\sqrt{x}}\right).\dfrac{x-1}{2x+\sqrt{x}-1}\)với x>-0, x khác 1, x khác \(\dfrac{1}{4}\)
2, \(A=\dfrac{\left(\sqrt{x}-1\right)^2.\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{3\sqrt{x}+1}{x-1}\) với x\(\ge\)0:x\(\ne\)0
cho biểu thức P=\(\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{2x}{9-x}\right)\):\(\left(\dfrac{\sqrt{x}-1}{x-3\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\)
1. Rút gọn biểu thức P
2. Tính giá trị của P biết x=\(\sqrt{7+4\sqrt{3}}\)+\(\sqrt{7-4\sqrt{3}}\)
\(1,P=\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{2x}{9-x}\right):\left(\dfrac{\sqrt{x}-1}{x-3\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\left(dkxd:x\ge0,x\ne9\right)\)
\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{2x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\dfrac{2}{\sqrt{x}}\right)\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)-2x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{\sqrt{x}-1-2\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-3\sqrt{x}-2x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\sqrt{x}-1-2\sqrt{x}+6}\)
\(=\dfrac{-x-3\sqrt{x}}{\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}}{-\sqrt{x}+5}\)
\(=\dfrac{-\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}}{5-\sqrt{x}}\)
\(=-\dfrac{x}{5-\sqrt{x}}\)
\(2,x=\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)
\(=\sqrt{\left(2+\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=\left|2+\sqrt{3}\right|+\left|2-\sqrt{3}\right|\)
\(=2+\sqrt{3}+2-\sqrt{3}=4\)
\(x=4\Rightarrow P=-\dfrac{4}{5-\sqrt{4}}=\dfrac{-4}{5-2}=-\dfrac{4}{3}\)
rút gọn biểu thức: P=\(\dfrac{4\sqrt{xy}}{x-y}\):\(\left(\dfrac{1}{y-x}+\dfrac{1}{x+2\sqrt{x}\sqrt{y}+y^2}\right)\)-2x
\(P=\dfrac{4\sqrt{xy}}{x-y}:\left(\dfrac{1}{y-x}+\dfrac{1}{x+2\sqrt{x}\sqrt{y}+y}\right)-2x\) (với \(x\ne y,x,y\ge0\))
\(P=\dfrac{4\sqrt{xy}}{x-y}:\left(\dfrac{1}{\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{y}+\sqrt{x}\right)}+\dfrac{1}{\left(\sqrt{x}+\sqrt{y}\right)^2}\right)-2x\)
\(P=\dfrac{4\sqrt{xy}}{x-y}:\left(\dfrac{\sqrt{y}+\sqrt{x}}{\left(\sqrt{y}+\sqrt{x}\right)^2\left(\sqrt{y}-\sqrt{x}\right)}+\dfrac{\sqrt{y}-\sqrt{x}}{\left(\sqrt{x}+\sqrt{y}\right)^2\left(\sqrt{y}-\sqrt{x}\right)}\right)-2x\)
\(P=\dfrac{4\sqrt{xy}}{x-y}:\left(\dfrac{\sqrt{y}+\sqrt{x}+\sqrt{y}-\sqrt{x}}{\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{x}+\sqrt{y}\right)^2}\right)-2x\)
\(P=\dfrac{4\sqrt{xy}}{x-y}:\left(\dfrac{2\sqrt{y}}{\left(y-x\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)-2x\)
\(P=\dfrac{4\sqrt{xy}}{x-y}\cdot\dfrac{\left(y-x\right)\left(\sqrt{x}+\sqrt{y}\right)}{2\sqrt{y}}-2x\)
\(P=\dfrac{4\sqrt{xy}\cdot\left(y-x\right)\left(\sqrt{x}+\sqrt{y}\right)}{\left(x-y\right)\cdot2\sqrt{y}}-2x\)
\(P=\dfrac{4\sqrt{xy}\cdot\left(y-x\right)\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)\cdot2\sqrt{y}}-2x\)
\(P=\dfrac{2\sqrt{x}\left(y-x\right)}{\sqrt{x}-\sqrt{y}}-2x\)
\(P=\dfrac{2\sqrt{x}\left(y-x\right)-2x\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}\)
\(P=\dfrac{2y\sqrt{x}-2x\sqrt{x}-2x\sqrt{x}+2x\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)
\(P=\dfrac{2y\sqrt{x}-4x\sqrt{x}+2x\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)
2 a. rút gọn biểu C = \(\dfrac{2x^{\text{2}}-x}{\text{x }-1}+\dfrac{x+1}{1-x}+\dfrac{2-x^2}{x-1}\)
b. Rút gọn biểu thức D = \(\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{\text{a}}-1}\right):\dfrac{\sqrt{\text{a}}+1}{a-2\sqrt{a}+1}\)
Vậy khi rút gọn một biểu thức hửu tỉ và một biểu thức chứa căn có tìm điều kiện xác định không?
\(a,C=\dfrac{2x^2-x-x-1+2-x^2}{x-1}\left(x\ne1\right)\\ C=\dfrac{x^2-2x+1}{x-1}=\dfrac{\left(x-1\right)^2}{x-1}=x-1\\ b,D=\dfrac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\left(a>0;a\ne1\right)\\ D=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)
Có
1. Cho biểu thức: A=\(\left(\sqrt{x}+\dfrac{4\sqrt{x}}{\sqrt{x}-2}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{4}{2\sqrt{x}-x}\right)\)
Rút gọn biểu thức trên
\(A=\left(\sqrt{x}+\dfrac{4\sqrt{x}}{\sqrt{x}-2}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{4}{2\sqrt{x}-x}\right)\)ĐK : x > 0 ; x \(\ne\)4
\(=\left(\dfrac{x+2\sqrt{x}}{\sqrt{x}-2}\right):\left(\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)=\dfrac{x\left(x-4\right)}{\left(\sqrt{x}-2\right)\left(x-4\right)}\)
\(=\dfrac{x}{\sqrt{x}-2}\)
Ta có: \(A=\left(\sqrt{x}+\dfrac{4\sqrt{x}}{\sqrt{x}-2}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{4}{2\sqrt{x}-x}\right)\)
\(=\dfrac{x-2\sqrt{x}+4\sqrt{x}}{\sqrt{x}-2}:\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x}{\sqrt{x}-2}\)
1. \(\left(\dfrac{\sqrt{x}}{\sqrt{x}+2}-\dfrac{4}{x+2\sqrt{x}}\right):\left(1+\dfrac{1}{\sqrt{x}}\right)\)
Rút gọn biểu thức A
ĐK: `x>0`
`A=((\sqrtx)/(\sqrtx+2) - 4/(x+2\sqrtx)):(1+1/(\sqrtx))`
`=((\sqrtx)/(\sqrtx+2)-4/(\sqrtx(\sqrtx+2))):((\sqrtx+1)/(\sqrtx))`
`=(x -4)/(\sqrtx(\sqrtx+2)) . (\sqrtx)/(\sqrtx+1)`
`=((\sqrtx+2)(\sqrtx-2))/(\sqrtx+2) . 1/(\sqrtx+1)`
`=(\sqrt-2)/(\sqrtx+1)`
Ta có:\(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}+2}-\dfrac{4}{x+2\sqrt{x}}\right):\left(1+\dfrac{1}{\sqrt{x}}\right)\)
\(=\dfrac{x-4}{x\left(\sqrt{x}+2\right)}:\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}-2}{x}.\dfrac{\sqrt{x}}{\sqrt{x}+1}=\dfrac{\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
Rút gọn các biểu thức sau:
\(C=\left(\dfrac{\sqrt{x}+1}{x-4}-\dfrac{\sqrt{x}-1}{x+4\sqrt{x}+4}\right).\dfrac{x\sqrt{x}+2x-4\sqrt{x}-8}{\sqrt{x}-2}\)
(với \(x\ge0,x\ne4,x\ne9\))
\(D=\left(\dfrac{\sqrt{x}+2}{x-9}-\dfrac{\sqrt{x}-2}{x+6\sqrt{x}+9}\right).\dfrac{x\sqrt{x}+3x-9\sqrt{x}-27}{\sqrt{x}-2}\)
(với \(x\ge0,x\ne4,x\ne9\))
\(C=\left(\dfrac{\sqrt{x}+1}{x-4}-\dfrac{\sqrt{x}-1}{x+4\sqrt{x}+4}\right).\dfrac{x\sqrt{x}+2x-4\sqrt{x}-8}{\sqrt{x}-2}\)
\(=\left[\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+2\right)^2}\right].\dfrac{x\left(\sqrt{x}+2\right)-4\left(\sqrt{x}+2\right)}{\sqrt{x}-2}\)
\(=\left[\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}-\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}\right].\dfrac{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}{\sqrt{x}-2}\)
\(=\left[\dfrac{x+3\sqrt{x}+2}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}-\dfrac{x-3\sqrt{x}+2}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}\right].\left(\sqrt{x}+2\right)^2\)
\(=\dfrac{6\sqrt{x}}{\sqrt{x}-2}\)
\(C=\left[\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+2\right)^2}\right].\dfrac{\sqrt{x}\left(x-4\right)+2\left(x-4\right)}{\sqrt{x}-2}\) (\(x\ge0,x\ne4,x\ne9\))
\(C=\left[\dfrac{\sqrt{x}+1-\sqrt{x}+1}{\left(\sqrt{x}-2\right)\left(\sqrt{x+2}\right)^2}\right].\dfrac{\left(\sqrt{x}+2\right)\left(x-4\right)}{\sqrt{x}-2}\)
\(C=\dfrac{2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)^2}.\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+2\right)\left(\sqrt{x-2}\right)}{\sqrt{x}-2}\)
\(C=\dfrac{2}{\left(\sqrt{x}-2\right)\left(\sqrt{x+2}\right)^2}.\left(\sqrt{x}+2\right)^2\)
\(C=\dfrac{2}{\sqrt{x}-2}\)
1) cho biểu thức A= \(\dfrac{x^2-\sqrt{x}}{x-\sqrt{x}+1}\) - \(\dfrac{2x+\sqrt{x}}{\sqrt{x}}\) + \(\dfrac{2.\left(x-1\right)}{\sqrt{x}-1}\) ( x>0; x ≠1)
a) Rút gọn biểu thức A
b) Tìm giá trị nhỏ nhất của 4
Lời giải:
a.
\(A=\frac{\sqrt{x}(\sqrt{x^3}-1)}{x+\sqrt{x}+1}-\frac{\sqrt{x}(2\sqrt{x}+1)}{\sqrt{x}}+\frac{2(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}-1}\)
\(=\frac{\sqrt{x}(\sqrt{x}-1)(x+\sqrt{x}+1)}{x+\sqrt{x}+1}-(2\sqrt{x}+1)+2(\sqrt{x}+1)\)
\(=\sqrt{x}(\sqrt{x}-1)-2\sqrt{x}-1+2\sqrt{x}+2\\ =x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\\ =x-\sqrt{x}+1\)
b.
$A=x-\sqrt{x}+1=(x-\sqrt{x}+\frac{1}{4})+\frac{3}{4}$
$=(\sqrt{x}-\frac{1}{2})^2+\frac{3}{4}\geq 0+\frac{3}{4}=\frac{3}{4}$
$\Rightarrow A_{\min}=\frac{3}{4}$
Giá trị này đạt tại $\sqrt{x}-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{4}$