Những câu hỏi liên quan
NL
Xem chi tiết
NT
5 tháng 5 2021 lúc 13:44

Câu 1:

Sửa đề: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

Ta có: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}+3\right)}+\dfrac{1}{\sqrt{x}+3}\right):\left(\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}:\dfrac{x+3\sqrt{x}-2\sqrt{x}-6+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x+\sqrt{x}}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=1\)

Bình luận (0)
NT
5 tháng 5 2021 lúc 13:46

Câu 3: 

Ta có: \(Q=\left(\dfrac{a}{a-2\sqrt{a}}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{a-4\sqrt{a}+4}\)

\(=\left(\dfrac{a}{\sqrt{a}\left(\sqrt{a}-2\right)}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-2\right)^2}\)

\(=\dfrac{a+\sqrt{a}}{\sqrt{a}-2}\cdot\dfrac{\sqrt{a}-2}{\sqrt{a}+1}\cdot\dfrac{\sqrt{a}-2}{1}\)

\(=\sqrt{a}\left(\sqrt{a}-2\right)\)

\(=a-2\sqrt{a}\)

Bình luận (0)
EO
Xem chi tiết
NT
23 tháng 12 2020 lúc 12:55

a) Ta có: \(P=\left(\dfrac{1}{\sqrt{x}-\sqrt{x-1}}-\dfrac{x-3}{\sqrt{x-1}-\sqrt{2}}\right)\left(\dfrac{2}{\sqrt{2}-\sqrt{x}}-\dfrac{\sqrt{x}+\sqrt{2}}{\sqrt{2x}-x}\right)\)

\(=\left(\dfrac{\sqrt{x}+\sqrt{x-1}}{x-\left(x-1\right)}-\dfrac{\left(\sqrt{x-1}-\sqrt{2}\right)\left(\sqrt{x-1}+\sqrt{2}\right)}{\sqrt{x-1}-\sqrt{2}}\right)\cdot\left(\dfrac{2}{\sqrt{2}-\sqrt{x}}-\dfrac{\sqrt{x}+\sqrt{2}}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}\right)\)

\(=\left(\sqrt{x}+\sqrt{x-1}-\sqrt{x-1}-\sqrt{2}\right)\cdot\left(\dfrac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}-\dfrac{\sqrt{x}+\sqrt{2}}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}\right)\)

\(=\left(\sqrt{x}-\sqrt{2}\right)\cdot\dfrac{2\sqrt{x}-\sqrt{x}-\sqrt{2}}{-\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\left(\sqrt{x}-\sqrt{2}\right)\cdot\dfrac{\sqrt{x}-\sqrt{2}}{-\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{2}-\sqrt{x}}{\sqrt{x}}\)

b) Ta có: \(x=3-2\sqrt{2}\)

\(=2-2\cdot\sqrt{2}\cdot1+1\)

\(=\left(\sqrt{2}-1\right)^2\)

Thay \(x=\left(\sqrt{2}-1\right)^2\) vào biểu thức \(P=\dfrac{\sqrt{2}-\sqrt{x}}{\sqrt{x}}\), ta được: 

\(P=\dfrac{\sqrt{2}-\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{\left(\sqrt{2}-1\right)^2}}\)

\(=\dfrac{\sqrt{2}-\left(\sqrt{2}-1\right)}{\sqrt{2}-1}\)

\(=\dfrac{\sqrt{2}-\sqrt{2}+1}{\sqrt{2}-1}\)

\(=\dfrac{1}{\sqrt{2}-1}\)

\(=\sqrt{2}+1\)

Vậy: Khi \(x=3-2\sqrt{2}\) thì \(P=\sqrt{2}+1\)

Bình luận (1)
NL
Xem chi tiết
AL
Xem chi tiết
H24
7 tháng 6 2023 lúc 18:27

\(1,P=\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{2x}{9-x}\right):\left(\dfrac{\sqrt{x}-1}{x-3\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\left(dkxd:x\ge0,x\ne9\right)\)

\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{2x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\dfrac{2}{\sqrt{x}}\right)\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)-2x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{\sqrt{x}-1-2\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x-3\sqrt{x}-2x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\sqrt{x}-1-2\sqrt{x}+6}\)

\(=\dfrac{-x-3\sqrt{x}}{\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}}{-\sqrt{x}+5}\)

\(=\dfrac{-\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}}{5-\sqrt{x}}\)

\(=-\dfrac{x}{5-\sqrt{x}}\)

\(2,x=\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)

\(=\sqrt{\left(2+\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=\left|2+\sqrt{3}\right|+\left|2-\sqrt{3}\right|\)

\(=2+\sqrt{3}+2-\sqrt{3}=4\)

\(x=4\Rightarrow P=-\dfrac{4}{5-\sqrt{4}}=\dfrac{-4}{5-2}=-\dfrac{4}{3}\)

Bình luận (1)
NN
Xem chi tiết
H9
15 tháng 7 2023 lúc 8:29

\(P=\dfrac{4\sqrt{xy}}{x-y}:\left(\dfrac{1}{y-x}+\dfrac{1}{x+2\sqrt{x}\sqrt{y}+y}\right)-2x\) (với \(x\ne y,x,y\ge0\))

\(P=\dfrac{4\sqrt{xy}}{x-y}:\left(\dfrac{1}{\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{y}+\sqrt{x}\right)}+\dfrac{1}{\left(\sqrt{x}+\sqrt{y}\right)^2}\right)-2x\)

\(P=\dfrac{4\sqrt{xy}}{x-y}:\left(\dfrac{\sqrt{y}+\sqrt{x}}{\left(\sqrt{y}+\sqrt{x}\right)^2\left(\sqrt{y}-\sqrt{x}\right)}+\dfrac{\sqrt{y}-\sqrt{x}}{\left(\sqrt{x}+\sqrt{y}\right)^2\left(\sqrt{y}-\sqrt{x}\right)}\right)-2x\)

\(P=\dfrac{4\sqrt{xy}}{x-y}:\left(\dfrac{\sqrt{y}+\sqrt{x}+\sqrt{y}-\sqrt{x}}{\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{x}+\sqrt{y}\right)^2}\right)-2x\)

\(P=\dfrac{4\sqrt{xy}}{x-y}:\left(\dfrac{2\sqrt{y}}{\left(y-x\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)-2x\)

\(P=\dfrac{4\sqrt{xy}}{x-y}\cdot\dfrac{\left(y-x\right)\left(\sqrt{x}+\sqrt{y}\right)}{2\sqrt{y}}-2x\)

\(P=\dfrac{4\sqrt{xy}\cdot\left(y-x\right)\left(\sqrt{x}+\sqrt{y}\right)}{\left(x-y\right)\cdot2\sqrt{y}}-2x\)

\(P=\dfrac{4\sqrt{xy}\cdot\left(y-x\right)\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)\cdot2\sqrt{y}}-2x\)

\(P=\dfrac{2\sqrt{x}\left(y-x\right)}{\sqrt{x}-\sqrt{y}}-2x\)

\(P=\dfrac{2\sqrt{x}\left(y-x\right)-2x\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}\)

\(P=\dfrac{2y\sqrt{x}-2x\sqrt{x}-2x\sqrt{x}+2x\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)

\(P=\dfrac{2y\sqrt{x}-4x\sqrt{x}+2x\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)

Bình luận (0)
DV
Xem chi tiết
NM
10 tháng 11 2021 lúc 14:52

\(a,C=\dfrac{2x^2-x-x-1+2-x^2}{x-1}\left(x\ne1\right)\\ C=\dfrac{x^2-2x+1}{x-1}=\dfrac{\left(x-1\right)^2}{x-1}=x-1\\ b,D=\dfrac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\left(a>0;a\ne1\right)\\ D=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)

Có 

Bình luận (0)
KG
Xem chi tiết
NT
25 tháng 7 2021 lúc 15:53

\(A=\left(\sqrt{x}+\dfrac{4\sqrt{x}}{\sqrt{x}-2}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{4}{2\sqrt{x}-x}\right)\)ĐK : x > 0 ; x \(\ne\)4

\(=\left(\dfrac{x+2\sqrt{x}}{\sqrt{x}-2}\right):\left(\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)=\dfrac{x\left(x-4\right)}{\left(\sqrt{x}-2\right)\left(x-4\right)}\)

\(=\dfrac{x}{\sqrt{x}-2}\)

Bình luận (1)
NT
25 tháng 7 2021 lúc 19:54

Ta có: \(A=\left(\sqrt{x}+\dfrac{4\sqrt{x}}{\sqrt{x}-2}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{4}{2\sqrt{x}-x}\right)\)

\(=\dfrac{x-2\sqrt{x}+4\sqrt{x}}{\sqrt{x}-2}:\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{x}{\sqrt{x}-2}\)

Bình luận (0)
KG
Xem chi tiết
TL
21 tháng 7 2021 lúc 21:12

ĐK: `x>0` 

`A=((\sqrtx)/(\sqrtx+2) - 4/(x+2\sqrtx)):(1+1/(\sqrtx))`

`=((\sqrtx)/(\sqrtx+2)-4/(\sqrtx(\sqrtx+2))):((\sqrtx+1)/(\sqrtx))`

`=(x -4)/(\sqrtx(\sqrtx+2)) . (\sqrtx)/(\sqrtx+1)`

`=((\sqrtx+2)(\sqrtx-2))/(\sqrtx+2) . 1/(\sqrtx+1)`

`=(\sqrt-2)/(\sqrtx+1)`

Bình luận (0)
EC
21 tháng 7 2021 lúc 21:14

Ta có:\(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}+2}-\dfrac{4}{x+2\sqrt{x}}\right):\left(1+\dfrac{1}{\sqrt{x}}\right)\)

             \(=\dfrac{x-4}{x\left(\sqrt{x}+2\right)}:\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

             \(=\dfrac{\sqrt{x}-2}{x}.\dfrac{\sqrt{x}}{\sqrt{x}+1}=\dfrac{\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

Bình luận (0)
H24
Xem chi tiết
HP
3 tháng 9 2021 lúc 10:01

\(C=\left(\dfrac{\sqrt{x}+1}{x-4}-\dfrac{\sqrt{x}-1}{x+4\sqrt{x}+4}\right).\dfrac{x\sqrt{x}+2x-4\sqrt{x}-8}{\sqrt{x}-2}\)

\(=\left[\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+2\right)^2}\right].\dfrac{x\left(\sqrt{x}+2\right)-4\left(\sqrt{x}+2\right)}{\sqrt{x}-2}\)

\(=\left[\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}-\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}\right].\dfrac{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}{\sqrt{x}-2}\)

\(=\left[\dfrac{x+3\sqrt{x}+2}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}-\dfrac{x-3\sqrt{x}+2}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}\right].\left(\sqrt{x}+2\right)^2\)

\(=\dfrac{6\sqrt{x}}{\sqrt{x}-2}\)

Bình luận (0)
TH
3 tháng 9 2021 lúc 10:12

\(C=\left[\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+2\right)^2}\right].\dfrac{\sqrt{x}\left(x-4\right)+2\left(x-4\right)}{\sqrt{x}-2}\) (\(x\ge0,x\ne4,x\ne9\))
\(C=\left[\dfrac{\sqrt{x}+1-\sqrt{x}+1}{\left(\sqrt{x}-2\right)\left(\sqrt{x+2}\right)^2}\right].\dfrac{\left(\sqrt{x}+2\right)\left(x-4\right)}{\sqrt{x}-2}\)
\(C=\dfrac{2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)^2}.\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+2\right)\left(\sqrt{x-2}\right)}{\sqrt{x}-2}\)
\(C=\dfrac{2}{\left(\sqrt{x}-2\right)\left(\sqrt{x+2}\right)^2}.\left(\sqrt{x}+2\right)^2\)
\(C=\dfrac{2}{\sqrt{x}-2}\)
 

Bình luận (0)
LP
Xem chi tiết
AH
5 tháng 11 2023 lúc 19:52

Lời giải:
a.

\(A=\frac{\sqrt{x}(\sqrt{x^3}-1)}{x+\sqrt{x}+1}-\frac{\sqrt{x}(2\sqrt{x}+1)}{\sqrt{x}}+\frac{2(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}-1}\)

\(=\frac{\sqrt{x}(\sqrt{x}-1)(x+\sqrt{x}+1)}{x+\sqrt{x}+1}-(2\sqrt{x}+1)+2(\sqrt{x}+1)\)

\(=\sqrt{x}(\sqrt{x}-1)-2\sqrt{x}-1+2\sqrt{x}+2\\ =x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\\ =x-\sqrt{x}+1\)

b.

$A=x-\sqrt{x}+1=(x-\sqrt{x}+\frac{1}{4})+\frac{3}{4}$

$=(\sqrt{x}-\frac{1}{2})^2+\frac{3}{4}\geq 0+\frac{3}{4}=\frac{3}{4}$

$\Rightarrow A_{\min}=\frac{3}{4}$

Giá trị này đạt tại $\sqrt{x}-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{4}$

Bình luận (0)