x^2+2y^2-3xy+x-2y
Tìm x
a) x(x^3+3x-4x)-(4x+3x^2)=20
b) (2\3xy-x^2+3xy^3)(2x^2-3xy^2+x^2y)
c) (2xy+3xy^2-x^2y)(xy+x^2y+y^2)
hihihihihihhihihhihihihhihihihhihihhihi
(x^2y^2 - x^2y + 4xy + 2x - 4) + (-x^2y^2 - 6x^2y - xy + 2x+4) - (2x^2y^2 - 3xy +x - 4)
=
P=-3xy(xy-2y^2)-x^2(x^2-y^2)+2y^2(x^2-3xy tại x=-2 y=2011 tại x=-2;y=2011
\(P=-3xy\left(xy-2y^2\right)-x^2\left(x^2-y^2\right)+2y^2\left(x^2-3xy\right)\)
\(P=-3x^2y^2+6xy^3-x^4+x^2y^2+2x^2y^2-6xy^3\)
\(P=-x^4\)
Thay x = -2 vào P, ta có:
\(P=-\left(-2\right)^4=-16\)
Ta có: \(P=-3xy\left(xy-2y^2\right)-x^2\left(x^2-y^2\right)+2y^2\left(x^2-3xy\right)\)
\(=-3x^2y^2+6xy^3-x^4+x^2y^2+2x^2y^2-6xy^3\)
\(=-x^4\)
\(=-16\)
Bai 1 TINH
a) x ^2 . x -2x^3
b) 6 x^2y . 3xy - 2y^2.x +y
C) 4x^2 +5x -1 .2x^3 -3x
d)-8x^3y + 2y^4 . 3xy^3 - 2x^4 +7y^4
GIUP MINH NHÀ
a.4x^2y-3xy^2+xy+xy-x^2y+5xy^2
b.x^2+2y^2+3xy+x^2-3y^2+4xy
c.2x^y-3xy+4xy^2-5x^2y+2xy^2
d.(2x^3+3x^2-4x+1)-(3x+4x^3-5)
Bạn viết đề cẩn thận bằng công thức toán thì sẽ tăng khả năng nhận được sự giúp đỡ hơn. Viết như thế này nhìn rối mắt cực.
a) (x^2-2x+3).(1/2x-5) b) (x^2y^2 -1/3xy+2y).(x-2y)
\(a,\left(x^2-2x+3\right)\left(\dfrac{1}{2}x-5\right)\\ =x^2.\dfrac{1}{2}x-5x^2-2x.\dfrac{1}{2}x+2x.5+3.\dfrac{1}{2}x-15\\ =\dfrac{1}{2}x^3-5x^2-x^2+10x+\dfrac{3}{2}x-15\\ =\dfrac{1}{2}x^3-6x^2+\dfrac{23}{2}x-15\)
\(b,\left(x^2y^2-\dfrac{1}{3}xy+2y\right)\left(x-2y\right)\\ =x^3y-2x^2y^3-\dfrac{1}{3}x^2y+\dfrac{2}{3}xy^2+2xy-4y^2\)
a) \(\left(x^2-2x+3\right)\left(\dfrac{1}{2}x-5\right)\)
\(=\dfrac{1}{2}x^3-5x^2-x+10x+\dfrac{3}{2}x-15\)
\(=\dfrac{1}{2}x^3-5x^2+\dfrac{48}{5}x-15\)
b) \(\left(x^2y^2-\dfrac{1}{3}xy+2y\right)\left(x-2y\right)\)
\(=x^3y^2-2x^2y^3-\dfrac{1}{3}x^2y+\dfrac{2}{3}xy^2+2xy-4y^2\)
giúp với ạ
Rút gọn
a, ( x + y ) . ( x + y ) mũ 2– 3xy . ( x + y )
b, ( x – y ) . ( x – y ) mũ 2 – 3xy . ( x – y)
c, ( x – 2y) mũ 2 + 4y mũ 2
d, ( 3x – 2y ) mũ 2 + 12xy
e, ( x – 3y ) . ( x + 3y ) – ( x – 2y ) mũ 2
a, (\(x\) + y).(\(x\) + y)2 - 3\(xy\).(\(x\) + y)
= (\(x+y\))3 - 3\(x^2\)y - 3\(xy^2\)
= \(x^3\) + 3\(x^2\).y + 3\(xy^2\) + y3 - 3\(x^2\).y - 3\(xy^2\)
= \(x^3\) + y3
b, (\(x-y\)).(\(x-y\))2 - 3\(xy\).(\(x-y\))
= (\(x\) - y)3 - 3\(x^2\).y + 3\(xy^2\)
= \(x^3\) - 3\(x^2\)y + 3\(xy^2\) - y3 - 3\(x^2\)y + 3\(xy^2\)
= \(x^3\) - 6\(x^2\)y + 6\(xy^2\) - y3
c, (\(x\) - 2y)2 + 4y2
= \(x^2\) - 4\(xy\) + 4y2 + 4y2
= \(x^2\) - 4\(xy\) + 8y2
Rút gọn phân thức x^2+3xy+2y^2/x^3+2x^2y-xy^2-2y^3
\(\dfrac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)
\(=\dfrac{\left(x+y\right)\left(x+2y\right)}{x\left(x^2-y^2\right)+2y\left(x^2-y^2\right)}\)
\(=\dfrac{x+y}{x^2-y^2}\)
\(=\dfrac{1}{x-y}\)