Những câu hỏi liên quan
DH
Xem chi tiết
H24
6 tháng 5 2022 lúc 20:28

`A=[sin x + sin 2x + sin 3x]/[cos x + cos 2x + cos 3x]`

`A=[2sin2x.cosx+sin2x]/[2cos2x.cosx+cos2x]`

`A=[sin2x(2cosx+1)]/[cos2x(2cosx+1)]`

`A=tan 2x`

Bình luận (0)
DL
6 tháng 5 2022 lúc 21:04

\(A=\dfrac{sinx-sin2x+sin3x}{cosx-cos2x+cos3x}\)

\(ĐK\left\{{}\begin{matrix}cos2x\ne0\\cosx\ne\dfrac{1}{2}\end{matrix}\right.\)  \(\Leftrightarrow\)  \(A=\dfrac{sinx+sin3x-sin2x}{cosx+cos3x-cos2x}\)     

\(\Leftrightarrow\)  \(\left\{{}\begin{matrix}=\dfrac{2sin2x.cosx-sin2x}{2cos2x.cosx-cos2x}\\=\dfrac{sin2x\left(2cosx-1\right)}{cos2x\left(2cosx-1\right)}\end{matrix}\right.\)  \(\Rightarrow\) \(A=tan2x\)

Bình luận (0)
PB
Xem chi tiết
CT
8 tháng 1 2019 lúc 11:59

Đáp án: A

Ta có:

A = c o s 2 x + sin 2 x + sin 2 x 2 sin x + c o s x

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Bình luận (0)
TP
Xem chi tiết
H24
27 tháng 9 2023 lúc 21:54

`A=[sin x+sin 2x+sin 3x]/[cos x+cos 2x+cos 3x]`

`A=[(sin x+sin 3x)+sin 2x]/[(cos x+cos 3x)+cos 2x]`

`A=[2sin 2x.cos (-x)+sin 2x]/[2cos 2x.cos (-x)+cos 2x]`

`A=[sin 2x(2cos(-x)+1)]/[cos 2x(2cos(-x)+1)]`

`A=[sin 2x]/[cos 2x]=tan 2x`.

Bình luận (0)
NN
Xem chi tiết
NL
20 tháng 5 2020 lúc 21:07

\(A=\frac{sin3x-sinx+cos2x}{cosx-cos3x+sin2x}=\frac{2cos2x.sinx+cos2x}{2sin2x.sinx+sin2x}=\frac{cos2x\left(2sinx+1\right)}{sin2x\left(2sinx+1\right)}=\frac{cos2x}{sin2x}=cot2x\)

Bình luận (0)
TA
Xem chi tiết
TH
9 tháng 8 2019 lúc 13:26

\(D=\frac{1+sin2x+cos2x}{1+sin2x-cos2x}=\frac{1+2sinxcosx+2cos^2x-1}{1+2sinxcosx-1+2sin^2x}\)

\(D=\frac{cosx\left(sinx+cosx\right)}{sinx\left(sinx+cosx\right)}=cotx\)

Bình luận (0)
TH
9 tháng 8 2019 lúc 13:28

\(F=\frac{sinx+sin4x+sin7x}{cosx+cos4x+cos7x}\)

\(F=\frac{2sin4xcos3x+sin4x}{2cos4xcos3x+cos4x}\)

\(F=\frac{2sin4x\left(cos3x+1\right)}{2cos4x\left(cos3x+1\right)}=tan4x\)

Bình luận (0)
TH
9 tháng 8 2019 lúc 13:32

\(G=\frac{cos2x-sin4x-cos6x}{cos2x+sin4x-cos6x}=\frac{-2sin4xsin2x-sin4x}{-2sin4xsin2x+sin4x}\)

\(G=\frac{-sin4x\left(2sin2x+1\right)}{-sin4x\left(2sin2x-1\right)}=\frac{2sin2x+1}{2sin2x-1}\)

Bình luận (0)
PT
Xem chi tiết
NL
12 tháng 5 2019 lúc 11:41

\(A=\frac{sinx+sin3x+sin2x}{cosx+cos3x+cos2x}=\frac{2sin2x.cosx+sin2x}{2cos2x.cosx+cos2x}=\frac{sin2x\left(2cosx+1\right)}{cos2x\left(2cosx+1\right)}=\frac{sin2x}{cos2x}=tan2x\)

Bình luận (0)
JP
Xem chi tiết
NT
2 tháng 11 2023 lúc 10:24

loading...  loading...  loading...  loading...  loading...  loading...  

Bình luận (0)
JP
Xem chi tiết
AH
11 tháng 9 2020 lúc 17:52

Tiêu đề không phù hợp. Cái này là giải phương trình bạn nhá.

Lời giải:

PT $\Leftrightarrow 2\cos ^2x-1-2\cos x\sin x=\sin x+\cos x$

$\Leftrightarrow (2\cos ^2x-1-\cos x)-(2\cos x\sin x+\sin x)=0$

$\Leftrightarrow (\cos x-1)(2\cos x+1)-\sin x(2\cos x+1)=0$

$\Leftrightarrow (2\cos x+1)(\cos x-1-\sin x)=0$

Nếu $2\cos x+1=0\Rightarrow x=\pm \frac{2}{3}\pi +2k\pi$ với $k$ nguyên.

Nếu $\cos x-1-\sin x=0$

$\Leftrightarrow \cos x-\sin x=1$

$\Rightarrow \cos x=\sin x+1$

$\Rightarrow \cos ^2x=(\sin x+1)^2$

$\Leftrightarrow 1-\sin ^2x=(\sin x+1)^2$

$\Rightarrow \sin x=0$ hoặc $\sin x=-1$

Nếu $\sin x=0\Rightarrow \cos x=1$. Ta tìm được $x=2k\pi$ với $k$ nguyên

Nếu $\sin x=-1\Rightarrow \cos x=0$. Ta tìm được $x=2k\pi-\frac{\pi}{2}$ với $k$ nguyên.

Bình luận (0)
AH
Xem chi tiết
NL
9 tháng 4 2019 lúc 18:07

a/ \(sin3x=sin\left(2x+x\right)=sin2xcosx+cos2x.sinx\)

\(=2sinxcos^2x+\left(1-2sin^2x\right)sinx=2sinx\left(1-sin^2x\right)+sinx-2sin^3x\)

\(=3sinx-4sin^3x\)

b/

\(tan2x+\frac{1}{cos2x}=\frac{sin2x}{cos2x}+\frac{1}{cos2x}=\frac{sin2x+1}{cos2x}=\frac{2sinxcosx+sin^2x+cos^2x}{cos^2x-sin^2x}\)

\(=\frac{\left(sinx+cosx\right)^2}{\left(sinx+cosx\right)\left(cosx-sinx\right)}=\frac{sinx+cosx}{cosx-sinx}=\frac{\left(sinx+cosx\right)\left(cosx-sinx\right)}{\left(cos-sinx\right)^2}\)

\(=\frac{cos^2x-sin^2x}{cos^2x+sin^2x-2sinxcosx}=\frac{1-2sin^2x}{1-sin2x}\)

c/

\(\frac{cosx+sinx}{cosx-sinx}-\frac{cosx-sinx}{cosx+sinx}=\frac{\left(cosx+sinx\right)^2-\left(cosx-sinx\right)^2}{cos^2x-sin^2x}\)

\(=\frac{2sinxcosx+2sinxcosx}{cos2x}=\frac{4sinxcosx}{cos2x}=\frac{2sin2x}{cos2x}=2tan2x\)

d/

\(\frac{sin2x}{1+cos2x}=\frac{2sinxcosx}{1+2cos^2x-1}=\frac{2sinxcosx}{2cos^2x}=\frac{sinx}{cosx}=tanx\)

e/

Bình luận (0)