Những câu hỏi liên quan
NM
Xem chi tiết
LQ
13 tháng 4 2020 lúc 16:54

x=1;y=-1;z=2 nhé bn đấy là tìm mò còn lời giải để mình nghĩ cái ( hơi lâu đấy =((( )

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
IY
4 tháng 3 2018 lúc 19:36

a) \(\frac{1}{5}xy\left(x-y\right)+2\left(y^2x+xy^2\right)\)

\(=\frac{1}{5}x^2y-\frac{1}{5}xy^2+2y^2x+2xy^2\)

\(=\frac{1}{5}x^2y-xy^2\left(\frac{1}{5}-2-2\right)\)

\(=\frac{1}{5}x^2y-\frac{-19}{5}xy^2\)

+) BẬC CỦA ĐƠN THỨC: 3

B) \(3x^2yz-4xy^2z^2-\left(xyz+x^2y^2z^2\right)\left(a+1\right)\)

\(3x^2yz-4xy^2z^2-\left(a+1\right)xyz-\left(a+1\right)x^2y^2z^2\)

+) BẬC CỦA ĐƠN THỨC: 6

CHÚC BN HỌC TỐT!!!!

Bình luận (0)
H24
4 tháng 3 2018 lúc 20:06
bạn giải chi tiết hơn dc k
Bình luận (0)
IY
5 tháng 3 2018 lúc 13:34

A) BỔ SUNG 

\(\frac{1}{5}x^2y-xy^2\left(\frac{1}{5}-2-2\right)=\frac{1}{5}x^2y-xy^2.\frac{-19}{5}=\frac{1}{5}x^2y-\frac{-19}{5}xy^2\)

mk dùng tính chất giao hoán của phép nhân ,để chuyển -19/5 lên trước!

vì thầy mk bảo là nên viết hệ số trước, phần biến sau!

Bình luận (0)
YY
Xem chi tiết
NL
14 tháng 5 2020 lúc 23:39

\(VT=\sum\sqrt{\frac{1}{2}\left(x^2+2xy+y^2\right)+\frac{3}{2}\left(x^2+y^2\right)}\)

\(VT\ge\sum\sqrt{\frac{1}{2}\left(x+y\right)^2+\frac{3}{4}\left(x+y\right)^2}=\sum\sqrt{\frac{5}{4}\left(x+y\right)^2}\)

\(VT\ge\frac{\sqrt{5}}{2}\left(x+y\right)+\frac{\sqrt{5}}{2}\left(y+z\right)+\frac{\sqrt{5}}{2}\left(z+x\right)\)

\(VT\ge\sqrt{5}\left(x+y+z\right)=\sqrt{5}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

Bình luận (0)
HP
Xem chi tiết
TN
2 tháng 4 2017 lúc 6:33

Đặt \(\hept{\begin{cases}\frac{1}{x^2}=a\\\frac{1}{y^2}=b\\\frac{1}{z^2}=c\end{cases}}\Rightarrow abc=1\) và ta cần chứng minh 

\(\frac{1}{2a+b+3}+\frac{1}{2b+c+3}+\frac{1}{2c+a+3}\le\frac{1}{2}\left(1\right)\)

Áp dụng BĐT AM-GM ta có: 

\(2a+b+3=\left(a+b\right)+\left(a+1\right)+2\ge2\left(\sqrt{ab}+\sqrt{a}+2\right)\)

\(\Rightarrow\frac{1}{2a+b+3}\le\frac{1}{2\left(\sqrt{ab}+\sqrt{a}+1\right)}=\frac{1}{2}\cdot\frac{1}{\sqrt{ab}+\sqrt{a}+1}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\frac{1}{2b+c+3}\le\frac{1}{2}\cdot\frac{1}{\sqrt{bc}+\sqrt{b}+1};\frac{1}{2c+a+3}\le\frac{1}{2}\cdot\frac{1}{\sqrt{ac}+\sqrt{c}+1}\)

Cộng theo vế 3 BĐT trên ta có: 

\(VT_{\left(1\right)}\le\frac{1}{2}\left(\frac{1}{\sqrt{ab}+\sqrt{a}+1}+\frac{1}{\sqrt{b}+\sqrt{bc}+1}+\frac{1}{\sqrt{c}+\sqrt{ac}+1}\right)\le\frac{1}{2}=VP_{\left(2\right)}\left(abc=1\right)\)

Bình luận (0)
HP
23 tháng 4 2017 lúc 14:53

t nghĩ ôg có chút nhầm lẫn , phải là sigma (1/2b+a+3) </ 1/2 

Bình luận (0)
VT
Xem chi tiết
H24
30 tháng 11 2017 lúc 19:48

a) BĐT \(\Leftrightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(x+y+z\right)\ge0\)

suy ra sai đề

b) BĐT \(\Leftrightarrow\dfrac{\left(x-y\right)\left(y-z\right)\left(x-z\right)\left(xy+yz+xz\right)}{xyz}\ge0\) ( đúng vì \(x\ge y\ge z>0\))

Bình luận (0)
DH
Xem chi tiết
H24
10 tháng 12 2017 lúc 21:23

bạn ơi hình như có chút sai đề

Bình luận (0)
NT
Xem chi tiết
NN
10 tháng 7 2023 lúc 13:01

0,2:x=1,03+3,97

 

 

Bình luận (0)
NT
10 tháng 7 2023 lúc 19:54

a: A=-2xy+xy+xy^2=-xy+xy^2

Bậc là 3

b: \(B=xy^2z+2xy^2z-3xy^2z+xy^2z-xyz=-xyz+xy^2z\)

Bậc là 4

c: \(C=4x^2y^3-x^2y^3+x^4+6x^4-2x^2=3x^2y^3+7x^4-2x^2\)

Bậc là 5

d: \(D=\dfrac{3}{4}xy^2-\dfrac{1}{2}xy^2+xy=\dfrac{1}{4}xy^2+xy\)

bậc là 3

e: \(E=2x^2-4x^2+3z^4-z^4-3y^3+2y^3\)

=-2x^2+2z^4-y^3

Bậc là 4

f: \(=3xy^2z+xy^2z+2xy^2z-4xyz=6xy^2z-4xyz\)

Bậc là 4

Bình luận (0)
PA
Xem chi tiết
TT
9 tháng 3 2016 lúc 4:19

Ta chứng minh điều sau: Nếu \(a,b>0\) thì \(2a^2+ab+2b^2\ge\frac{5\left(a+b\right)^2}{4}.\)  Thực vậy bất đẳng thức cần chứng minh tương đương với
 \(8a^2+4ab+8b^2\ge5\left(a^2+2ab+b^2\right)\Leftrightarrow3\left(a^2-2ab+b^2\right)\ge0\Leftrightarrow3\left(a-b\right)^2\ge0.\)

Quay lại bài toán, áp dụng nhận xét ta được

\(\sqrt{2x^2+xy+2y^2}\ge\frac{5\left(x+y\right)}{2},\sqrt{2y^2+yz+2z^2}\ge\frac{5\left(y+z\right)}{2},\sqrt{2z^2+zx+2x^2}\ge\frac{5\left(z+x\right)}{2}.\)

Cộng các bất đẳng thức lại ta sẽ được \(VT\ge\frac{5}{2}>\sqrt{5}.\)

Bình luận (0)
LM
8 tháng 3 2016 lúc 20:58

mn ơi ko OLM ko có khóa học lớp 9 àh

Bình luận (0)
TV
8 tháng 3 2016 lúc 22:00

bạn hỏi toàn những câu cực kì khoai..

Bình luận (0)
SK
Xem chi tiết
BL
15 tháng 5 2017 lúc 16:04

a) 2x2yz + 4xy2z - 5x2yz + xy2z - xyz

= (2x2yz-5x2yz)+(4xy2z+xy2z)-xyz

= -3x2yz + 5xy2z - xyz

b) x3-5xy+3x3+xy-x2+\(\dfrac{1}{2}\)xy-x2

= (x3+3x3)+(xy-5xy+\(\dfrac{1}{2}\)xy)-(x2+x2)

= 4x3-\(\dfrac{7}{2}\)xy-2x2

Bình luận (0)