cho tam giác DEF vông góc tại D có đường DI, biết DI=4CM,IF=2cm.Tính IE,DE
cho tam giác DEF góc D = 90° đường cao DI biết DE = 6 EI= 3 tính DF = ? EF b,DI = 6 IF = 4 tính IE,DE,DF Gấp lắm ạ.
a: DE^2=EI*EF
=>EF=6^2/3=12cm
=>DF=căn 12^2-6^2=6*căn 3(cm)
b: IE=6^2/4=9cm
EF=9+4=13cm
DE=căn IE*EF=3căn 13(cm)
DF=căn 4*13=2căn 13(cm)
Cho tam giác DEF vuông tại D có đường cao DI. Biết DI=42cm và DE:DF=3:7 . tính IE,IF
Ta có : \(\frac{DE}{DF}=\frac{3}{7}\Rightarrow DE=\frac{3}{7}DF\)
Xét tam giác DEF vuông tại D, đường cao DI
* Áp dụng hệ thức : \(\frac{1}{DI^2}=\frac{1}{DE^2}+\frac{1}{DF^2}=\frac{1}{\left(\frac{3}{7}DF\right)^2}+\frac{1}{DF^2}\Rightarrow\frac{1}{1764}=\frac{1}{\left(\frac{3}{7}DF\right)^2}+\frac{1}{DF^2}\)
\(\Rightarrow DF=14\sqrt{58}\)cm
\(\Rightarrow DE=\frac{3}{7}DF=\frac{3}{7}.14\sqrt{58}=6\sqrt{58}\)cm
Áp dụng định lí Pytago tam giác DIE vuông tại I, đường cao DI
\(ED^2=EI^2+DI^2\Rightarrow EI=\sqrt{ED^2-DI^2}=18\)cm
* Áp dụng hệ thức : \(DI^2=EI.FI\Rightarrow FI=\frac{DI^2}{EI}=98\)cm
Cho tam giác DEF có DE=DF kẻ DI là tia phân giác của góc D chứng minh IE=IF
Cho tam giác DEF cân tại D vơí đường trung tuyến DI.
a)Chứng minh :Tam giác DEI bằng tam giác DFI.
b) Chứng minh :Góc DIE là góc vuông.
c)Biết DI=12cm; IE =5cm .Tính DE.
a) Vì △DEF là tam giác cân nên DE = DF
Xét △DEI và△DFI có:
DE = DF
EI = IF
DI : cạnh chung
Suy ra △DEI = △DFI(c.c.c)
b) Vì △DEF là tam giác cân có đường trung tuyến DI
nên DI đồng thời là đường cao của △DEF
Suy ra \(\widehat{DIE}\) là góc vuông.
c) △DIE vuông tạ I có:
DE2 = DI2 + IE2 (định lí Pi-ta-go)
DE2 = 122 + 52
DE2 = 169
DE = \(\sqrt{169}\)= 13 (cm)
Cho tam giác DEF vuông tại D ,DI là đường cao .Tính DI biết : 1)DE=3cm,DF=4cm
\(EF=\sqrt{3^2+4^2}=5\left(cm\right)\)
DI=3*4/5=2,4cm
Cho tam giác DEF vuông góc tại D,DI là đường cao,DE=9 cm,EF=13 cm
a.Giải tam giác DEF.
b.Tính DI,IE,IF
c.Kẻ IM vuông góc DE,IN vuông góc DF.Tính MN và chứng minh DE.DM=DF.DN.
Trả lời giúp mình với ạ!Mình cảm ơn nhiều!
a) Áp dụng định lí Pytago vào ΔEDF vuông tại D, ta được:
\(EF^2=DF^2+DE^2\)
\(\Leftrightarrow DF^2=13^2-9^2=88\)
hay \(DF=2\sqrt{22}\left(cm\right)\)
Xét ΔEDF vuông tại D có
\(\sin\widehat{E}=\dfrac{DF}{EF}=\dfrac{2\sqrt{22}}{13}\)
nên \(\widehat{E}\simeq46^0\)
\(\Leftrightarrow F=44^0\)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔDFE vuông tại D có DI là đường cao ứng với cạnh huyền EF, ta được:
\(DI\cdot EF=DF\cdot DE\)
\(\Leftrightarrow DI=\dfrac{18\sqrt{22}}{13}\left(cm\right)\)
Áp dụng định lí Pytago vào ΔDIF vuông tại I, ta được:
\(DF^2=DI^2+IF^2\)
\(\Leftrightarrow IF^2=DF^2-DI^2=\left(2\sqrt{22}\right)^2-\left(\dfrac{18\sqrt{22}}{13}\right)^2=\dfrac{7744}{169}\)
hay \(IF=\dfrac{88}{13}\left(cm\right)\)
Ta có: IE+IF=EF(I nằm giữa E và F)
nên \(IE=EF-IF=13-\dfrac{88}{13}=\dfrac{81}{13}\left(cm\right)\)
c) Xét tứ giác DMIN có
\(\widehat{NDM}=90^0\)
\(\widehat{IND}=90^0\)
\(\widehat{IMD}=90^0\)
Do đó: DMIN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
Suy ra: DI=MN(Hai đường chéo của hình chữ nhật DMIN)
mà \(DI=\dfrac{18\sqrt{22}}{13}\left(cm\right)\)
nên \(MN=\dfrac{18\sqrt{22}}{13}\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔDIE vuông tại I có IM là đường cao ứng với cạnh huyền DE, ta được:
\(DM\cdot DE=DI^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔDIF vuông tại I có IN là đường cao ứng với cạnh huyền DF, ta được:
\(DN\cdot DF=DI^2\)(2)
Từ (1) và (2) suy ra \(DM\cdot DE=DN\cdot DF\)
Cho tam giác DEF vuông tại D có DE=6cm, DF=8cm. Vẽ DH vuông góc với EF tại H a,chứng minh tam giác HED đồng dạng với tam giác DEF b,tính EF,DH c, vẽ DI là phân giác của góc EDH cắt EH tại I. Tính IE, IH
a) xét ΔHED và ΔDEF có
\(\widehat{EHD}=\widehat{EDF}=\)90o
\(\widehat{E} chung\)
=> ΔHED ∼ ΔDEF (gg)
b) Xét ΔDEF có \(\widehat{D}=\)90o
=> DE2+DF2=EF2
=>62+82=EF2
=> EF=10 cm
SΔDEF=\(\dfrac{ED.DF}{2}=\dfrac{DH.EF}{2}\)=> ED.DF=DH.EF => 6.8=DH.10
=> DH =4,8 cm
c) Xét ΔDEH có \(\widehat{EHD}=90\)o
=> HD2.HE2=ED2
=>4.82+HE2=62
=> HE=3.6
ta lại có DI là phân giác
=> \(\dfrac{EI}{IH}=\dfrac{ED}{HD}\)
=>\(\dfrac{EI}{EH-EI}=\dfrac{6}{4.8} \)=>\(\dfrac{EI}{3.6-EI}=\dfrac{6}{4.8}\)=>EI=2
=> IH=EH-EI=3.6-2=1.6
a) Xét ΔHED vuông tại H và ΔDEF vuông tại D có
\(\widehat{HED}\) chung
Do đó: ΔHED\(\sim\)ΔDEF(g-g)
b) Áp dụng định lí Pytago vào ΔDEF vuông tại D, ta được:
\(EF^2=DE^2+DF^2\)
\(\Leftrightarrow EF^2=6^2+8^2=100\)
hay EF=10(cm)
Ta có: ΔHED\(\sim\)ΔDEF(cmt)
nên \(\dfrac{DH}{FD}=\dfrac{ED}{EF}\)(Các cặp cạnh tương ứng tỉ lệ)
\(\Leftrightarrow DH=\dfrac{DE\cdot DF}{EF}=\dfrac{6\cdot8}{10}=\dfrac{48}{10}=4.8\left(cm\right)\)
Vậy: EF=10cm; DH=4,8cm
1. Cho tam giác OCD vuông tại O có đường cao OH. Biết CD = 24cm , .
Tính độ dài OH, OC, OD.
2. Cho tam giác DEF vuông tại D, đường cao DI. Biết , DE = 18 cm . Giải tam giác DEF và tính độ dài DI.
Bài 1:
\(CH=24\cdot\dfrac{3}{8}=9\left(cm\right)\)
\(DH=15\left(cm\right)\)
\(OC=\sqrt{9\cdot24}=6\sqrt{6}\left(cm\right)\)
\(OD=\sqrt{24^2-216}=6\sqrt{10}\left(cm\right)\)
\(OH=3\sqrt{15}\left(cm\right)\)
Cho tam giác DEF cân tại D kẻ DI vg góc vs DF ( I thuộc EF ) chứng minh rằng :
a, IE =IF và góc EDI =góc FDI
b, kẻ IM vg góc vs DE ( M thuộc DE) , IN vuông góc vs DE ( N thuộc DF) chứng minh DM = DN
C, Tam giác IMN là tâm giác gì ? Vì sao?