Những câu hỏi liên quan
TP
Xem chi tiết
AT
Xem chi tiết
NL
8 tháng 1 2021 lúc 17:36

Gọi M là trung điểm EF

\(\overrightarrow{BM}=\dfrac{1}{2}\overrightarrow{BE}+\dfrac{1}{2}\overrightarrow{BF}=-\dfrac{3}{2}\overrightarrow{AB}+\dfrac{1}{2}\left(\overrightarrow{BC}+\overrightarrow{CF}\right)\)

\(=-\dfrac{3}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AD}-\dfrac{1}{4}\overrightarrow{AB}=-\dfrac{7}{4}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AD}\)

\(\overrightarrow{BG}=\dfrac{2}{3}\overrightarrow{BM}=-\dfrac{7}{6}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AD}\)

\(\overrightarrow{AG}=\overrightarrow{AB}+\overrightarrow{BG}=-\dfrac{1}{6}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AD}\)

\(\overrightarrow{DG}=\overrightarrow{DA}+\overrightarrow{AG}=-\overrightarrow{AD}+\overrightarrow{AG}=-\dfrac{1}{6}\overrightarrow{AB}-\dfrac{2}{3}\overrightarrow{AD}\)

Bình luận (0)
QV
Xem chi tiết
NL
Xem chi tiết
GH
Xem chi tiết
TC
Xem chi tiết
NT
9 tháng 10 2023 lúc 20:31

E là trung điểmcủa BC

=>EB=EC=a/2

\(AE=\sqrt{AB^2+BE^2}=\dfrac{a\sqrt{5}}{2}\)

Xét ΔABE vuông tại B có \(\left\{{}\begin{matrix}cosBAE=\dfrac{AB}{AE}=\dfrac{a}{\dfrac{a\sqrt{5}}{2}}=\dfrac{2}{\sqrt{5}}\\sinBAE=\dfrac{BE}{AE}=\dfrac{0.5a}{\dfrac{a\sqrt{5}}{2}}=\dfrac{1}{\sqrt{5}}\end{matrix}\right.\)

=>\(cosDAF=cosBEA=sinBAE=\dfrac{1}{\sqrt{5}}\)

\(AF=\dfrac{AE}{2}=\dfrac{a\sqrt{5}}{4}\)

Xét ΔADF có \(cosDAF=\dfrac{AD^2+AF^2-DF^2}{2\cdot AD\cdot AF}\)

=>\(\dfrac{a^2+a^2\cdot\dfrac{5}{16}-DF^2}{2\cdot\dfrac{a\sqrt{5}}{4}\cdot a}=\dfrac{1}{\sqrt{5}}\)

=>\(\dfrac{\dfrac{21}{16}a^2-DF^2}{\dfrac{a^2\sqrt{5}}{2}}=\dfrac{1}{\sqrt{5}}\)

=>\(\dfrac{21}{16}a^2-DF^2=\dfrac{a^2}{2}\)

=>\(DF^2=\dfrac{13}{16}a^2\)

=>\(DF=\dfrac{a\sqrt{13}}{4}\)

Bình luận (0)
TV
Xem chi tiết
LA
Xem chi tiết
H24
Xem chi tiết
NL
19 tháng 9 2021 lúc 17:18

\(\left\{{}\begin{matrix}AM=\sqrt{AB^2+BM^2}=3\sqrt{5}\\DM=\sqrt{CD^2+CM^2}=3\sqrt{5}\end{matrix}\right.\) \(\Rightarrow\) tam giác ADM cân tại M

Gọi F là trung điểm AD \(\Rightarrow ABMF\) là hình chữ nhật \(\Rightarrow MF=AB=6\)

Theo tính chất trọng tâm: \(GF=\dfrac{1}{3}MF=2\)

\(DF=\dfrac{1}{2}AD=3\)

Đặt \(T=\left|\overrightarrow{GD}\right|=\left|\overrightarrow{GF}+\overrightarrow{FD}\right|\)

\(\Rightarrow T^2=GF^2+FD^2+2\overrightarrow{GF}.\overrightarrow{DF}=GF^2+DF^2=2^2+3^2=13\) 

\(\Rightarrow\left|\overrightarrow{GD}\right|=\sqrt{13}\)

Bình luận (0)
NL
19 tháng 9 2021 lúc 17:18

undefined

Bình luận (0)