Những câu hỏi liên quan
MP
Xem chi tiết
MP
25 tháng 7 2018 lúc 11:34

Hung nguyen : help

Bình luận (0)
TD
25 tháng 7 2018 lúc 11:34

Đặt A = \(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)

\(\Rightarrow\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-3\sqrt{2}}< A\)

\(A^3=3+2\sqrt{2}+3-2\sqrt{2}+3\sqrt[3]{9-8}=9\)

\(\Rightarrow A^8=\left(A^3\right)^2.A^2=9^2.\left(\sqrt[3]{9}\right)^2=3^4.\sqrt[3]{81}=3^5.\sqrt[3]{3}< 3^6\)

\(\Rightarrow\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-3\sqrt{2}}< A< 3^6\)

......... Kaito Kid ........

Bình luận (3)
DT
Xem chi tiết
DT
Xem chi tiết
AH
28 tháng 1 2018 lúc 22:22

Vậy làm theo đề đã sửa nhé.

Lời giải:

Không mất tính tổng quát. Giả sử \(a\geq b\geq c\geq 0\)

Khi đó: \(\left\{\begin{matrix} b^2-bc+c^2=b^2+c(c-b)\leq b^2\\ a^2-ca+c^2=a^2+c(c-a)\leq a^2\end{matrix}\right.\)

\(\Rightarrow P=(a^2-ab+b^2)(b^2-bc+c^2)(c^2-ca+a^2)\)

\(\leq (a^2-ab+b^2)a^2b^2\)

Áp dụng BĐT AM-GM ngược dấu ta có:

\(P\leq a^2b^2(a^2-ab+b^2)=\frac{4}{9}.\frac{3ab}{2}.\frac{3ab}{2}(a^2-ab+b^2)\)

\(\leq \frac{4}{9}\left(\frac{a^2-ab+b^2+\frac{3ab}{2}+\frac{3ab}{2}}{3}\right)^3\)

\(\Leftrightarrow P\leq \frac{4}{9}\left(\frac{(a+b)^2}{3}\right)^3\Leftrightarrow P\leq \frac{4}{243}(a+b)^6\)

Vì \(c\geq 0\Rightarrow a+b=3-c\leq 3\)

Do đó \(P\leq \frac{4}{243}.3^6=12\)

Vậy \(P_{\max}=12\). Dấu bằng xảy ra khi \((a,b,c)=(2,1,0)\) và các hoán vị của nó.

P/s: Bài này cũng chính là bài mình thi hsg vòng trường 5 năm trước :)

Bình luận (1)
NN
28 tháng 1 2018 lúc 21:44

giống đề thi t

Bình luận (7)
AH
28 tháng 1 2018 lúc 22:04

Bạn xem hộ mình xem đề có đúng không. Số thực dương hay số không âm? GTLN hay GTNN ?

Bình luận (1)
DT
Xem chi tiết
AH
25 tháng 4 2018 lúc 12:36

Lời giải:

Ta có:

\(M=\sqrt{a^2+abc}+\sqrt{b^2+abc}+\sqrt{c^2+abc}+9\sqrt{abc}\)

\(M=\sqrt{a(a+bc)}+\sqrt{b(b+ac)}+\sqrt{c(c+ab)}+9\sqrt{abc}\)

Áp dụng BĐT Bunhiacopxky:

\([\sqrt{a(a+bc)}+\sqrt{b(b+ac)}+\sqrt{c(c+ab)}]^2\leq (a+b+c)(a+bc+b+ac+c+ab)\)

\(\Leftrightarrow \sqrt{a(a+bc)}+\sqrt{b(b+ac)}+\sqrt{c(c+ab)}\leq \sqrt{1+ab+bc+ac}\)

Theo hệ quả của BĐT AM-GM: \(ab+bc+ac\leq \frac{(a+b+c)^2}{3}=\frac{1}{3}\)

\(\Rightarrow \sqrt{a(a+bc)}+\sqrt{b(b+ac)}+\sqrt{c(c+ab)}\leq \frac{2\sqrt{3}}{3}(1)\)

AM-GM: \(a+b+c\geq 3\sqrt[3]{abc}\Rightarrow abc\leq \frac{1}{27}\Rightarrow 9\sqrt{abc}\leq \sqrt{3}(2)\)

Từ (1);(2) suy ra: \(M\leq \frac{2\sqrt{3}}{3}+\sqrt{3}=\frac{5\sqrt{3}}{3}\)

Vậy \(M_{\max}=\frac{5\sqrt{3}}{3}\) . Dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\)

Bình luận (0)
PL
Xem chi tiết
MS
20 tháng 7 2018 lúc 9:02

\(\left(\sqrt{n+a}+\sqrt{n-a}\right)^2\le\left(1^2+1^2\right)\left(n+a+n-a\right)=4n\)

\(\Leftrightarrow\sqrt{n+a}+\sqrt{n-a}\le2\sqrt{n}\)

Dấu "=" hiển nhiên k xảy ra ( a>0) nên ta có đpcm

Áp dụng: Cái bđt kia ko lq đến cái bđt cm ở trên. xem lại đề

Bình luận (1)
HN
20 tháng 7 2018 lúc 9:23

Giả sử cái trên đã được chứng minh. Giờ làm cái ứng dụng thôi.

\(\sqrt{101}-\sqrt{99}=\dfrac{2}{\sqrt{101}+\sqrt{99}}>\dfrac{2}{2\sqrt{100}}=\dfrac{1}{10}=0,1\)

Bình luận (3)
MP
20 tháng 7 2018 lúc 9:32

ta có : cái chứng minh lm như bác Phúc nha (Phúc lm đúng rồi đó) .

ta có : \(\sqrt{101}+\sqrt{99}=\sqrt{100+1}+\sqrt{100-1}< 2\sqrt{100}=20\)

\(\Rightarrow\sqrt{101}+\sqrt{99}< 20\) \(\Leftrightarrow\dfrac{\sqrt{101}+\sqrt{99}}{2}< 10\)

\(\Leftrightarrow\dfrac{\sqrt{101}+\sqrt{99}}{\left(\sqrt{101}+\sqrt{99}\right)\left(\sqrt{101}-\sqrt{99}\right)}< 10\) \(\Leftrightarrow\dfrac{1}{\sqrt{101}-\sqrt{99}}< 10\)

\(\Leftrightarrow\sqrt{101}-\sqrt{99}>\dfrac{1}{10}=0,1\left(đpcm\right)\)

Bình luận (2)
NP
Xem chi tiết
AH
29 tháng 12 2018 lúc 19:33

Lời giải:

Bài này bạn chịu khó tìm điểm rơi rồi áp BĐT AM-GM vào thôi:

Áp dụng BĐT AM-GM:

\(\sqrt{ab}=\frac{1}{2}\sqrt{a.4b}\leq \frac{a+4b}{4}\)

\(\sqrt[3]{abc}=\frac{1}{4}\sqrt[3]{a.4b.16c}\leq \frac{a+4b+16c}{12}\)

Cộng theo vế:
\(\Rightarrow a+\sqrt{ab}+\sqrt[3]{abc}\leq a+\frac{a+4b}{4}+\frac{a+4b+16c}{12}=\frac{4}{3}(a+b+c)\)

\(a+\sqrt{ab}+\sqrt[3]{abc}=\frac{4}{3}\Rightarrow a+b+c\geq 1\)

Vậy \((a+b+c)_{\min}=1\)

Bình luận (0)
AT
Xem chi tiết
UK
6 tháng 8 2018 lúc 7:29

\(\Rightarrow\dfrac{A}{2x^2+y^2+xy}\le\dfrac{A}{1}\Leftrightarrow\dfrac{x^2+y^2}{2x^2+y^2+xy}\le A\)

Đặt \(\dfrac{x}{y}=t\). Ta có:

\(P=\dfrac{x^2+y^2}{2x^2+y^2+xy}=\dfrac{\left(\dfrac{x^2}{y^2}\right)+\left(\dfrac{y^2}{y^2}\right)}{\left(\dfrac{2x^2}{y^2}\right)+\left(\dfrac{y^2}{y^2}\right)+\left(\dfrac{xy}{y^2}\right)}=\dfrac{t^2+1}{2t^2+1+t}\)

\(\Rightarrow2t^2P+P+Pt=t^2+1\Leftrightarrow t^2\left(2P-1\right)+Pt+P-1\)

\(\Delta=P^2-4\left(2P-1\right)\left(P-1\right)\ge0\)

\(\Rightarrow\dfrac{6-2\sqrt{2}}{7}\le P\le\dfrac{6+2\sqrt{2}}{7}\)

\(\Rightarrow A\ge P\ge\dfrac{6-2\sqrt{2}}{7}\)

Bình luận (1)
PM
Xem chi tiết
AH
4 tháng 1 2020 lúc 21:50

Lời giải:

BĐT cần chứng minh tương đương với:

\(\frac{bc}{\sqrt{5abc(3a+2b)}}+\frac{ac}{\sqrt{5abc(3b+2c)}}+\frac{ab}{\sqrt{5abc(3c+2a)}}\geq \frac{3}{5}(*)\)

Áp dụng BĐT AM-GM:

\(5abc(3a+2b)=5ab.(3ac+2bc)\leq \left(\frac{5ab+3ac+2bc}{2}\right)^2\)

\(\Rightarrow \frac{bc}{\sqrt{5abc(3a+2b)}}\geq \frac{2bc}{5ab+3ac+2bc}=\frac{2(bc)^2}{5ab^2c+3abc^2+2b^2c^2}\)

Hoàn toàn tương tự với các phân thức còn lại, cộng theo vế ta suy ra:

\(\sum \frac{bc}{\sqrt{5abc(3a+2b)}}\geq \sum \frac{2(bc)^2}{5ab^2c+3abc^2+2b^2c^2}(1)\)

Áp dụng BĐT Cauchy_Schwarz và AM-GM:

\(\sum \frac{2(bc)^2}{5ab^2c+3abc^2+2b^2c^2}\geq 2.\frac{(bc+ab+ac)^2}{2[(ab)^2+(bc)^2+(ca)^2+4abc(a+b+c)]}=\frac{(ab+bc+ac)^2}{(ab)^2+(bc)^2+(ca)^2+4abc(a+b+c)}\)

\(=\frac{(ab+bc+ac)^2}{(ab+bc+ac)^2+2abc(a+b+c)}\geq \frac{(ab+bc+ac)^2}{(ab+bc+ac)^2+\frac{2}{3}(ab+bc+ac)^2}=\frac{3}{5}(2)\)

Từ $(1);(2)$ suy ra $(*)$ đúng. BĐT được chứng minh.

Dấu "=" xảy ra khi $a=b=c$

Bình luận (0)
 Khách vãng lai đã xóa
AH
4 tháng 1 2020 lúc 21:52

Các bạn CTV lưu ý chỉ xóa những bài lặp lại, không đúng box, không đúng chủ đề, sai chính tả tùm lum và viết không có công thức gây khó hiểu thôi nhé.

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
MS
20 tháng 10 2018 lúc 18:23

Đang học Bunyakovsky đúng hong :D

1)

\(S=\sqrt{a^2+4ab+b^2}+\sqrt{b^2+4bc+c^2}+\sqrt{c^2+4ac+a^2}\)

\(S^2=\left(\sqrt{a^2+4ab+b^2}+\sqrt{b^2+4bc+c^2}+\sqrt{c^2+4ac+a^2}\right)^2\)

\(\le\left(1^2+1^2+1^2\right)\left(a^2+4ab+b^2+b^2+4bc+c^2+c^2+4ac+a^2\right)\)

\(=3.2\left(a^2+b^2+c^2+2ab+2bc+2ac\right)=6.\left(a+b+c\right)^2=6.6^2=216\)

\(\Leftrightarrow S\le6\sqrt{6}."="\Leftrightarrow a=b=c=2\)

2) \(M^2=\left(\sqrt{x+1}+\sqrt{y+1}\right)^2\le\left(1^2+1^2\right)\left(x+1+y+1\right)=2.8=16\)

\(M\le4."="\Leftrightarrow x=y=3\)

3)

\(S=ab+2\left(a+b\right)\le\dfrac{\left(a+b\right)^2}{4}+\dfrac{8\left(a+b\right)}{4}\)

\(=\dfrac{\left(a+b\right)^2+8\left(a+b\right)}{4}\)

\(\left(a+b\right)^2\le\left(1^2+1^2\right)\left(a^2+b^2\right)=2\Leftrightarrow a+b\le\sqrt{2}\)

\(\dfrac{\left(a+b\right)^2+8\left(a+b\right)}{4}\le\dfrac{2+8\sqrt{2}}{4}=\dfrac{1+4\sqrt{2}}{2}\)

\(S\le\dfrac{1+4\sqrt{2}}{2}."="\Leftrightarrow a=b=\dfrac{1}{\sqrt{2}}\)

Bình luận (0)