Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

DT

Cho các số dương a,b,c tm:

a+b+c=1. Tìm Max M=\(\sqrt{a^2+abc}+\sqrt{b^2+abc}+\sqrt{c^2+abc}+9\sqrt{abc}\)

@Akai Haruma

AH
25 tháng 4 2018 lúc 12:36

Lời giải:

Ta có:

\(M=\sqrt{a^2+abc}+\sqrt{b^2+abc}+\sqrt{c^2+abc}+9\sqrt{abc}\)

\(M=\sqrt{a(a+bc)}+\sqrt{b(b+ac)}+\sqrt{c(c+ab)}+9\sqrt{abc}\)

Áp dụng BĐT Bunhiacopxky:

\([\sqrt{a(a+bc)}+\sqrt{b(b+ac)}+\sqrt{c(c+ab)}]^2\leq (a+b+c)(a+bc+b+ac+c+ab)\)

\(\Leftrightarrow \sqrt{a(a+bc)}+\sqrt{b(b+ac)}+\sqrt{c(c+ab)}\leq \sqrt{1+ab+bc+ac}\)

Theo hệ quả của BĐT AM-GM: \(ab+bc+ac\leq \frac{(a+b+c)^2}{3}=\frac{1}{3}\)

\(\Rightarrow \sqrt{a(a+bc)}+\sqrt{b(b+ac)}+\sqrt{c(c+ab)}\leq \frac{2\sqrt{3}}{3}(1)\)

AM-GM: \(a+b+c\geq 3\sqrt[3]{abc}\Rightarrow abc\leq \frac{1}{27}\Rightarrow 9\sqrt{abc}\leq \sqrt{3}(2)\)

Từ (1);(2) suy ra: \(M\leq \frac{2\sqrt{3}}{3}+\sqrt{3}=\frac{5\sqrt{3}}{3}\)

Vậy \(M_{\max}=\frac{5\sqrt{3}}{3}\) . Dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\)

Bình luận (0)

Các câu hỏi tương tự
BD
Xem chi tiết
H24
Xem chi tiết
LN
Xem chi tiết
TV
Xem chi tiết
KR
Xem chi tiết
H24
Xem chi tiết
DA
Xem chi tiết
CL
Xem chi tiết
SN
Xem chi tiết