Giải phương trình:
\(\dfrac{x-3}{2013}+\dfrac{x-2}{2014}=\dfrac{x-2014}{2}+\dfrac{x-2013}{3}\)
Giải phương trình:
\(\dfrac{\sqrt{x-2012}-1}{x-2012}+\dfrac{\sqrt{y-2013}-1}{y-2013}+\dfrac{\sqrt{z-2014}-1}{z-2014}=\dfrac{3}{4}\)
Điều kiện: \(x\ge2012;y\ge2013;z\ge2014\)
Áp dụng bất đẳng thức Cauchy, ta có:
\(\left\{{}\begin{matrix}\dfrac{\sqrt{x-2012}-1}{x-2012}=\dfrac{\sqrt{4\left(x-2012\right)}-2}{2\left(x-2012\right)}\le\dfrac{\dfrac{4+x-2012}{2}-2}{2\left(x-2012\right)}=\dfrac{1}{4}\\\dfrac{\sqrt{y-2013}-1}{y-2013}=\dfrac{\sqrt{4\left(y-2013\right)}-2}{2\left(y-2013\right)}\le\dfrac{\dfrac{4+y-2013}{2}-2}{2\left(y-2013\right)}=\dfrac{1}{4}\\\dfrac{\sqrt{z-2014}-1}{z-2014}=\dfrac{\sqrt{4\left(z-2014\right)}-2}{2\left(z-2014\right)}\le\dfrac{\dfrac{4+z-2014}{2}-2}{2\left(z-2014\right)}=\dfrac{1}{4}\end{matrix}\right.\)
Cộng vế theo vế, ta được:
\(\dfrac{\sqrt{x-2012}-1}{x-2012}+\dfrac{\sqrt{y-2013}-1}{y-2013}+\dfrac{\sqrt{z-2014}-1}{z-2014}\le\dfrac{3}{4}\)
Đẳng thức xảy ra khi \(x=2016;y=2017;z=2018\)
Vậy....
giải phương trình
a) \(\dfrac{x+1}{2015}+\dfrac{x+2}{2014}=\dfrac{x+3}{2013}+\dfrac{x+4}{2012}\)
b) \(\dfrac{x-85}{15}+\dfrac{x-74}{13}+\dfrac{x-67}{11}+\dfrac{x-64}{9}=10\)
giải chi tiết giúp e ạ;-;
a: \(\Leftrightarrow x+2016=0\)
hay x=-2016
b: \(\Leftrightarrow x-100=0\)
hay x=100
Giải phương trình \(\dfrac{5-x^2}{2012}-1=\dfrac{4-x^2}{2013}-\dfrac{x^{2-3}}{2014}\)
\(\Leftrightarrow\dfrac{5-x^2}{2012}=\dfrac{4-x^2}{2013}+1-\dfrac{x^2-3}{2014}\)
\(\Leftrightarrow\dfrac{5-x^2}{2012}+1=\dfrac{4-x^2}{2013}+1+\dfrac{3-x^2}{2014}+1\)
\(\Leftrightarrow2017-x^2=0\)
hay \(x\in\left\{\sqrt{2017};-\sqrt{2017}\right\}\)
\(\dfrac{x}{2012}\) +\(\dfrac{x+1}{2013}\)+\(\dfrac{x+2}{2014}\)+\(\dfrac{x+3}{2015}\)+\(\dfrac{x+4}{2016}\)=5
\(\dfrac{x}{2012}+\dfrac{x+1}{2013}+\dfrac{x+2}{2014}+\dfrac{x+3}{2015}+\dfrac{x+4}{2016}=5\)
\(\Leftrightarrow\dfrac{x}{2012}+\dfrac{x+1}{2013}+\dfrac{x+2}{2014}+\dfrac{x+3}{2015}+\dfrac{x+4}{2016}-5=0\)
\(\Leftrightarrow\dfrac{x}{2012}-1+\dfrac{x+1}{2013}-1+\dfrac{x+2}{2014}-1+\dfrac{x+3}{2015}+\dfrac{x+4}{2016}-1=0\)
\(\Leftrightarrow\dfrac{x-2012}{2012}+\dfrac{x-2012}{2013}+\dfrac{x-2012}{2014}+\dfrac{x-2012}{2015}+\dfrac{x-2012}{2016}=0\)
\(\Leftrightarrow\left(x-12\right).\left(\dfrac{1}{2012}+\dfrac{1}{2013}+\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}\right)=0\)
\(\Leftrightarrow x-12=0\)
\(\Leftrightarrow x=12\)
Tìm x biết:
\(\dfrac{x-1}{2016}+\dfrac{x-2}{2015}-\dfrac{x-3}{2014}=\dfrac{x-4}{2013}\)
\(\dfrac{x-1}{2016}+\dfrac{x-2}{2015}-\dfrac{x-3}{2014}=\dfrac{x-4}{2013}\)
\(\Leftrightarrow\dfrac{x-1}{2016}+\dfrac{x-2}{2015}=\dfrac{x-4}{2013}+\dfrac{x-3}{2014}\)
\(\Leftrightarrow\left(\dfrac{x-1}{2016}-1\right)+\left(\dfrac{x-2}{2015}-1\right)=\left(\dfrac{x-4}{2013}-1\right)+\left(\dfrac{x-3}{2014}-1\right)\)
\(\Leftrightarrow\dfrac{x-2017}{2016}+\dfrac{x-2017}{2015}=\dfrac{x-2017}{2013}+\dfrac{x-2017}{2014}\)
\(\Leftrightarrow\dfrac{x-2017}{2016}+\dfrac{x-2017}{2015}-\dfrac{x-2017}{2013}-\dfrac{x-2017}{2014}=0\)
\(\Leftrightarrow x-2017.\left(\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}-\dfrac{1}{2013}\right)=0\)
\(\text{Mà }\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}-\dfrac{1}{2103}\ne0\Rightarrow x-2017=0\)
\(\Leftrightarrow x=2017\) \(\text{Vậy }x=2017\)
Tìm x:
\(\left(\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2014}\right)x=\dfrac{2013}{1}+\dfrac{2012}{2}+.....+\dfrac{2}{2012}+\dfrac{1}{2013}\)
\(\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)x=\dfrac{2013}{1}+\dfrac{2012}{2}+...+\dfrac{2}{2012}+\dfrac{1}{2013}\)
\(\Leftrightarrow\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)x=\left(1+\dfrac{2012}{2}\right)+\left(1+\dfrac{2011}{3}\right)+...+\left(1+\dfrac{2}{2012}\right)+\left(1+\dfrac{1}{2013}\right)+1\)
\(\Leftrightarrow\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)x=\dfrac{2014}{2}+\dfrac{2014}{3}+...+\dfrac{2014}{2012}+\dfrac{2014}{2013}+\dfrac{2014}{2014}\)
\(\Leftrightarrow\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)x=2014.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}+\dfrac{1}{2013}+\dfrac{1}{2014}\right)\)
\(\Leftrightarrow x=\dfrac{2014.\left(\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{2014}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}}\)
\(\Leftrightarrow x=2014\)
Vậy \(x=2014\)
\(VP=\dfrac{2013}{1}+\dfrac{2012}{2}+...+\dfrac{1}{2013}\\ =\dfrac{2012}{2}+1+\dfrac{2011}{3}+1+...+\dfrac{1}{2013}+1+1\\ =\dfrac{2014}{2}+\dfrac{2014}{3}+...+\dfrac{2014}{2013}+\dfrac{2014}{2014}\\ =2014\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)\)
\(\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)x=2014\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)\\ x=2014\)
Vậy x = 2014
\(x=\dfrac{\dfrac{2013}{1}+\dfrac{2012}{2}+......+\dfrac{2}{2012}+\dfrac{1}{2013}}{\dfrac{1}{2}+\dfrac{1}{3}+......+\dfrac{1}{2014}}\)
\(=\dfrac{\left(\dfrac{2012}{2}+1\right)+\left(\dfrac{2011}{3}+1\right)+......+\left(\dfrac{1}{2013}+1\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+......+\dfrac{1}{2014}}\)
\(=\dfrac{\dfrac{2014}{2}+\dfrac{2014}{3}+......+\dfrac{2014}{2013}+\dfrac{2014}{2014}}{\dfrac{1}{2}+\dfrac{1}{3}+.......+\dfrac{1}{2014}}\)
\(=\dfrac{2014\left(\dfrac{1}{2}+\dfrac{1}{3}+......+\dfrac{1}{2014}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+......+\dfrac{1}{2014}}\)
=> x = 2014
\(\dfrac{x+1}{2015}+\dfrac{x+2}{2014}+\dfrac{x+3}{2013}=-3\)
\(\dfrac{x+1}{2015}+\dfrac{x+2}{2014}+\dfrac{x+3}{2013}=-3\)
\(\left(\dfrac{x+1}{2015}+1\right)+\left(\dfrac{x+2}{2014}+1\right)+\left(\dfrac{x+3}{2013}+1\right)=0\)
\(\dfrac{x+2016}{2015}+\dfrac{x+2016}{2014}+\dfrac{x+2016}{2013}=0\)
\(\left(x+2016\right)\left(\dfrac{1}{2015}+\dfrac{1}{2014}+\dfrac{1}{2013}\right)=0\)
\(\Rightarrow x+2016=0\Rightarrow x=-2016\)
\(\dfrac{x+1}{2015}+\dfrac{x+2}{2014}+\dfrac{x+3}{2013}=-3\)
\(\Rightarrow\dfrac{x+1}{2015}+1+\dfrac{x+2}{2014}+1+\dfrac{x+3}{2013}+1=0\)
\(\Rightarrow\dfrac{x+2016}{2015}+\dfrac{x+2016}{2014}+\dfrac{x+2016}{2013}=0\)
\(\Rightarrow\left(x+2016\right).\left(\dfrac{1}{2015}+\dfrac{1}{2014}+\dfrac{1}{2013}\right)=0\)
\(\Rightarrow x+2016=0\Rightarrow x=-2016\)
Chúc bạn học tốt!!!
\(\dfrac{x+1}{2015}+\dfrac{x+2}{2014}=\dfrac{x}{1008}+\dfrac{x+3}{2013}+1\)
\(\Leftrightarrow\dfrac{x+1}{2015}+1+\dfrac{x+2}{2014}+1=\dfrac{x}{1008}+\dfrac{x+3}{2013}+1\)
\(\Leftrightarrow\dfrac{x+2016}{2015}+\dfrac{x+2016}{2014}=\dfrac{x}{1008}+\dfrac{x+2016}{2013}\)
\(\Leftrightarrow\dfrac{x+2016}{2015}+\dfrac{x+2016}{2014}-\dfrac{x}{1008}-\dfrac{x+2016}{2013}=0\)
\(\Leftrightarrow\left(x+2016\right)\left(-\dfrac{x}{1008}+\dfrac{1}{2015}+\dfrac{1}{2014}+\dfrac{1}{2013}\right)=0\)
\(\Leftrightarrow x+2016=0\)
\(\Leftrightarrow x=-2016\)
\(\frac{x+1}{2015}+\frac{x+2}{2014}=\frac{x}{1008}+1+\frac{x+3}{2013}\)
\(\Leftrightarrow\frac{x+1}{2015}+1+\frac{x+2}{2014}+1=\frac{x+1008}{1008}+1+\frac{x+3}{2013}+1\)
\(\Leftrightarrow\frac{x+2016}{2015}+\frac{x+2016}{2014}=\frac{x+2016}{1008}+\frac{x+2016}{2013}\)
\(\Leftrightarrow\left(x+2016\right)\left(\frac{1}{2015}+\frac{1}{2014}-\frac{1}{1008}-\frac{1}{2013}\right)=0\)
vì \(\left(\frac{1}{2015}+\frac{1}{2014}-\frac{1}{1008}+\frac{1}{2013}\right)\ne0\)nên
x+2016=0\(\Leftrightarrow\)x=-2016
giải phương trình
a, \(\left(x^2+x+1\right).\left(x^2+x+2\right)=12\)
b,\(\dfrac{x+1}{2014}+\dfrac{x+2}{2013}=\dfrac{x+3}{2012}+\dfrac{x+4}{2011}\)
a/ Đặt \(x^2+x+1=a\Rightarrow x^2+x+2=a+1\)
Pt trở thành \(a\left(a+1\right)-12=0\Leftrightarrow a^2+a-12=0\)
\(\Leftrightarrow a^2-3a+4a-12=0\Leftrightarrow a\left(a-3\right)+4\left(a-3\right)=0\)
\(\Leftrightarrow\left(a-3\right)\left(a+4\right)=0\Leftrightarrow\left[{}\begin{matrix}a=3\\a=-4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2+x+1=3\\x^2+x+1=-4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+x-2=0\\x^2+x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x+2\right)=0\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
2/ \(\dfrac{x+1}{2014}+1+\dfrac{x+2}{2013}+1=\dfrac{x+3}{2012}+1+\dfrac{x+4}{2011}+1\)
\(\Leftrightarrow\dfrac{x+2015}{2014}+\dfrac{x+2015}{2013}=\dfrac{x+2015}{2012}+\dfrac{x+2015}{2011}\)
\(\Leftrightarrow\left(x+2015\right)\left(\dfrac{1}{2014}+\dfrac{1}{2013}-\dfrac{1}{2012}-\dfrac{1}{2011}\right)=0\)
\(\Leftrightarrow x+2015=0\) (do \(\dfrac{1}{2014}+\dfrac{1}{2013}-\dfrac{1}{2012}-\dfrac{1}{2011}\ne0\))
\(\Rightarrow x=-2015\)