\(\dfrac{x-3}{2013}+\dfrac{x-2}{2014}=\dfrac{x-2014}{2}+\dfrac{x-2013}{3}\)
\(\Leftrightarrow\left(\dfrac{x-3}{2013}-1\right)+\left(\dfrac{x-2}{2014}-1\right)=\left(\dfrac{x-2014}{2}-1\right)+\left(\dfrac{x-2013}{3}-1\right)\)\(\Leftrightarrow\dfrac{x-2016}{2013}+\dfrac{x-2016}{2014}=\dfrac{x-2016}{2}+\dfrac{x-2016}{3}\)
\(\Leftrightarrow\left(x-2016\right)\left(\dfrac{1}{2013}+\dfrac{1}{2014}-\dfrac{1}{2}-\dfrac{1}{3}\right)=0\)
Hiển nhiên \(\dfrac{1}{2013}+\dfrac{1}{2014}-\dfrac{1}{2}-\dfrac{1}{3}< 0.\)
Vậy \(S=\left\{2016\right\}\)
\(\dfrac{x-3}{2013}-1+\dfrac{x-2}{2014}-1=\dfrac{x-2014}{2}-1+\dfrac{x-2013}{3}-1\)
=> \(\dfrac{x-3-2013}{2013}+\dfrac{x-2-2014}{2014}=\dfrac{x-2014-2}{2}+\dfrac{x-2013-3}{3}\)
=> \(\dfrac{x-2016}{2013}+\dfrac{x-2016}{2014}-\dfrac{x-2016}{2}-\dfrac{x-2016}{3}=0\)
=> (x-2016)\(\left(\dfrac{1}{2013}+\dfrac{1}{2014}-\dfrac{1}{2}-\dfrac{1}{3}\right)=0\)
=> x-2016=0
=> x=2016