Những câu hỏi liên quan
MA
Xem chi tiết
DD
Xem chi tiết
H24
22 tháng 9 2020 lúc 21:15

\(\left(a+b+c\right)^2+a^2+b^2+c^2=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)

VT : (a + b + c)2 + a2 + b2 + c2

= a2 + b2 + c2 + 2ab +2bc + 2ac + a2 + b2 + c2

= ( a2 + 2ab + b2 ) + (b2 + 2bc + c2) + ( a2 + 2ac + c2)

= (a + b)2 + (b + c)2 + (a + c)2 = VP

Vậy \(\left(a+b+c\right)^2+a^2+b^2+c^2=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)(đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NL
1 tháng 3 2021 lúc 18:09

Đề bài thiếu, yêu cầu chứng minh gì nhỉ bạn?

Bình luận (1)
HA
Xem chi tiết
GL
24 tháng 2 2020 lúc 19:31

Áp dụng bđt Cauchy-Schwarz ta có

\(VT\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}=VP\)

BĐT được chứng minh

Dấu "=" xảy ra khi a=b=c

Bình luận (0)
 Khách vãng lai đã xóa
GL
24 tháng 2 2020 lúc 19:37

Cách 2

Áp dụng bđt AM-GM ta có

\(\frac{a^2}{b+c}+4\left(b+c\right)\ge2\sqrt{4a^2}=4a\)

Tương tự \(\frac{b^2}{c+a}+4\left(c+a\right)\ge4b\)

\(\frac{c^2}{a+b}+4\left(a+b\right)\ge4c\)

Cộng từng vế ta được đpcm

Bình luận (0)
 Khách vãng lai đã xóa
PM
Xem chi tiết
LD
Xem chi tiết
DH
15 tháng 10 2017 lúc 21:14

Đặt \(b+c=x;a+c=y;a+b=z\)

Áp dụng bđt Bunhiacopxki ta có :

\(\left(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\right)\left(\sqrt{x}^2+\sqrt{y}^2+\sqrt{z}^2\right)\ge\left(\frac{a}{\sqrt{x}}.\sqrt{x}+\frac{b}{\sqrt{y}}.\sqrt{y}+\frac{c}{\sqrt{z}}.\sqrt{z}\right)^2\)

\(\Leftrightarrow\left(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\right)\left(x+y+z\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)

\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}\)

\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\) (đpcm)

Dấu "=" xay ra \(\Leftrightarrow a=b=c\)

Bình luận (0)
PT
15 tháng 10 2017 lúc 21:08

Áp dụng S-vác-sơ, ta có

\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{b+c+a+c+a+b}\)

                                                     \(=\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)

Bình luận (0)
LD
15 tháng 10 2017 lúc 21:10

pham trung thanh giải theo cách lớp 8 đc ko ạ !

Bình luận (0)
MN
Xem chi tiết
NL
Xem chi tiết
KL
Xem chi tiết
ND
15 tháng 5 2021 lúc 7:30

Ta có: \(\frac{a^3}{a^2+b^2}=\frac{\left(a^3+ab^2\right)-ab^2}{a^2+b^2}=a-\frac{ab^2}{a^2+b^2}\ge a-\frac{ab^2}{2ab}=a-\frac{b}{2}\)

Tương tự CM được:

\(\frac{b^3}{b^2+c^2}\ge b-\frac{c}{2}\) và \(\frac{c^3}{c^2+a^2}\ge c-\frac{a}{2}\)

Cộng vế 3 BĐT trên lại ta được: 

\(\frac{a^3}{b^2+c^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge\frac{a+b+c}{2}=3\)

Dấu "=" xảy ra khi: a = b = c = 2

Bình luận (0)
 Khách vãng lai đã xóa
DL
29 tháng 4 2022 lúc 22:45

Bài này cách làm ntn

Bình luận (0)