CMR:\(\dfrac{2014}{\sqrt{2015}}+\dfrac{2015}{\sqrt{2014}}>\sqrt{2014}+\sqrt{2015}\)
Chứng tỏ :
\(\dfrac{1}{\sqrt{x+2014}+\sqrt{y+2014}}-\dfrac{1}{\sqrt{2015-x}+\sqrt{2015-y}}+\dfrac{1}{\sqrt{2014-x}+\sqrt{2014-y}}\ne0\)
Tính
\(M=\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+.......+\dfrac{1}{2015\sqrt{2014}+2014\sqrt{2015}}\)
Tính giá trị biểu thức
\(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{2015\sqrt{2014}+2014\sqrt{2015}}\)
Giải:
\(\dfrac{1}{\left(k+1\right)\sqrt{k}+k\left(\sqrt{k+1}\right)}\) \(=\dfrac{\left(k+1\right)\sqrt{k}-k\left(\sqrt{k+1}\right)}{\left(k+1\right)^2k-k^2\left(k+1\right)}\)
\(=\dfrac{\left(k+1\right)\sqrt{k}-k\left(\sqrt{k+1}\right)}{\left(k+1\right)k\left(k+1-k\right)}=\dfrac{1}{\sqrt{k}}-\dfrac{1}{\sqrt{k+1}}\)
Áp dụng vào biểu thức ta có:
\(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}\) \(+...+\dfrac{1}{2015\sqrt{2014}+2014\sqrt{2015}}\)
\(=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{2014}}-\dfrac{1}{\sqrt{2015}}\)
\(=1-\dfrac{1}{\sqrt{2015}}\)
Cho M=\(\dfrac{\sqrt{2}-\sqrt{1}}{1+2}+\dfrac{\sqrt{3}-\sqrt{2}}{2+3}+\dfrac{\sqrt{4}-\sqrt{3}}{3+4}+...+\dfrac{\sqrt{2015}-\sqrt{2014}}{2014+2015}\)
Hãy so sánh M với \(\dfrac{1}{2}\)
CMR: b) Biểu thức B=\(\sqrt{1+2014^2+\dfrac{2014^2}{2015^2}}+\dfrac{2014}{2015}\) có giá trị là một số nguyên
Với \(\forall a\in N\left(a\ne0\right)\cdot\),ta có:\(\sqrt{1+a^2+\dfrac{a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}=\sqrt{\dfrac{\left(a^2+1\right)\left(a^2+2a+1\right)+a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}=\sqrt{\dfrac{\left(a^2+1\right)^2+2a\left(a^2+1\right)+a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}=\sqrt{\dfrac{\left(a^2+a+1\right)^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}=\dfrac{a^2+a+1}{a+1}+\dfrac{a}{a+1}=\dfrac{\left(a+1\right)^2}{a+1}=a+1\in Z\)(Vì a là số tự nhiên)
Thay a=2014 vào thì ta có: B=2014+1=2015 là số nguyên
Tính:
\(\dfrac{1}{\sqrt{2013}-\sqrt{2014}}\)-\(\dfrac{1}{\sqrt{2014}-\sqrt{2015}}\)
Ta có:
\(\dfrac{1}{\sqrt{a}-\sqrt[]{a+1}}=\dfrac{\sqrt{a}+\sqrt{a+1}}{a-a+1}=\sqrt{a}+\sqrt{a+1}\)
\(\Rightarrow\dfrac{1}{\sqrt{2013}-\sqrt{2014}}-\dfrac{1}{\sqrt{2014}-\sqrt{2015}}=\sqrt{2013}+\sqrt{2014}-\sqrt{2014}-\sqrt{2015}=\sqrt{2013}-\sqrt{2015}\)
Ta có công thức tổng quát
\(\dfrac{1}{\sqrt{n}-\sqrt{n+1}}=\dfrac{\sqrt{n}+\sqrt{n+1}}{n-n-1}=-\left(\sqrt{n}+\sqrt{n+1}\right)=-\sqrt{n}-\sqrt{n-1}\)
Vậy \(\dfrac{1}{\sqrt{2013}-\sqrt{2014}}-\dfrac{1}{\sqrt{2014}-\sqrt{2015}}=-\sqrt{2013}-\sqrt{2014}-\left(-\sqrt{2014}-\sqrt{2015}\right)=-\sqrt{2013}-\sqrt{2014}+\sqrt{2014}+\sqrt{2015}=\sqrt{2015}-\sqrt{2013}\)
So sánh 2 số:
\(a)\sqrt{2014}-\sqrt{2013};B=\sqrt{2015}-\sqrt{2014}\\ b)E=\frac{2014}{\sqrt{2015}}+\frac{2015}{\sqrt{2014}};F=\sqrt{2014}+\sqrt{2015}\)
Cho x,y thỏa mãn \(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{y+2014}+\sqrt{2015-y}-\sqrt{2014-y}\)
CMR \(x=y\)
Cho x,y thỏa mãn \(\sqrt{x+2014}+\sqrt{2015-x}+\sqrt{2014-x}=\sqrt{y+2014}+\sqrt{2015-y}-\sqrt{2014-y}\)
CMR \(x=y\)
Phương trình tương đương
\(\left(\sqrt{x+2014}-\sqrt{y+2014}\right)+\left(\sqrt{2015-x}-\sqrt{2015-y}\right)+\left(\sqrt{2014-x}+\sqrt{2014-y}\right)=0\)
\(\Leftrightarrow\dfrac{x-y}{\sqrt{x+2014}+\sqrt{y+2014}}-\dfrac{x-y}{\sqrt{2015-x}+\sqrt{2015-y}}-\dfrac{x-y}{\sqrt{2014-x}-\sqrt{2014-y}}=0\)
\(\Rightarrow x=y\)