Violympic toán 9

NT

CMR: b) Biểu thức B=\(\sqrt{1+2014^2+\dfrac{2014^2}{2015^2}}+\dfrac{2014}{2015}\) có giá trị là một số nguyên

HK
12 tháng 9 2018 lúc 16:03

Với \(\forall a\in N\left(a\ne0\right)\cdot\),ta có:\(\sqrt{1+a^2+\dfrac{a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}=\sqrt{\dfrac{\left(a^2+1\right)\left(a^2+2a+1\right)+a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}=\sqrt{\dfrac{\left(a^2+1\right)^2+2a\left(a^2+1\right)+a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}=\sqrt{\dfrac{\left(a^2+a+1\right)^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}=\dfrac{a^2+a+1}{a+1}+\dfrac{a}{a+1}=\dfrac{\left(a+1\right)^2}{a+1}=a+1\in Z\)(Vì a là số tự nhiên)

Thay a=2014 vào thì ta có: B=2014+1=2015 là số nguyên

Bình luận (0)

Các câu hỏi tương tự
DH
Xem chi tiết
LN
Xem chi tiết
TT
Xem chi tiết
DN
Xem chi tiết
H24
Xem chi tiết
TD
Xem chi tiết
TN
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết