Những câu hỏi liên quan
GM
Xem chi tiết
NN
Xem chi tiết
YA
26 tháng 11 2016 lúc 20:43

a)

+) Nếu p = 2 thì p + 10 = 2 + 10 = 12 → Hợp số ( loại)

+) Nếu p = 3 thì p + 10 = 3 + 10 = 13 ; p + 14 = 17 → Số nguyên tố ( thỏa mãn )

+) Nếu p > 3 thì p có dạng : 3k + 1 hoặc 3k + 2

- Với p = 3k + 1 thì p + 14 = 3k + 1+ 14 = 3k + 15 chia hết cho 3 → Hợp số ( loại )

- Với p = 3k + 2 thì p + 10 = 3k + 2 +10 = 3k + 12 chia hết cho 3 → Hợp số (loại)

Vậy p = 3

 

Bình luận (0)
CS
1 tháng 1 2017 lúc 22:59

a)

- Nếu p = 2 => p + 10 = 2 + 10 = 12 là hợp số

=> p = 2 (loại)

- Nếu p = 3 => p + 10 = 3 + 10 = 13 là số nguyên tố

p + 14 = 3 + 14 = 17 là số nguyên tố

- Nếu p > 3 ; p là số nguyên tố thì p có dạng 3k + 1 và 3k + 2

+ p = 3k + 1 => p + 14 = 3k + 1 + 14 = 3k + 15 \(⋮\)3 là hợp số

=> p = 3k + 1 (loại)

+ p = 3k + 2 => p + 10 = 3k + 2 + 10 = 3k + 12 \(⋮\)3 là hợp số

=> p = 3k + 2 (loại)

Vập p = 3

b)

- Nếu p = 2 => p + 2 = 2 + 2 = 4 là hợp số

=> p = 2 (loại)

- Nếu p = 3 => p + 6 = 3 + 6 = 9 là hợp số

=> p = 3 (loại)

- Nếu p = 5 => p + 2 = 5 + 2 = 7 là số nguyên tố

p + 6 = 5 + 6 =11 là số nguyên tố

p + 8 = 5 + 8 = 13 là số nguyên tố

=> p = 5 (chọn)

- Nếu p > 5; p là số nguyên tố thì p có dạng là 5k - 1

p = 5k - 1 => p + 6 = 5k - 1 + 6 = 5k + 5 \(⋮\)5 là hợp số

=> p = 5k - 1 (loại)

Vập p = 5

Mình không biết phần b mình làm đúng không nữa!

Chúc bạn học tốt!

Bình luận (0)
AM
Xem chi tiết
LL
8 tháng 11 2014 lúc 20:12

a; nếu p=3 thì p+2=5 , p+4=7 đều là số nguyên tố

    nếu p>3 thì p có 2 dạng : p=3k+1, p=3k+2

     với p=3k+1 thì p+2=3k+1+2=3k+3 chia hết cho 3 => p+2 là hợp số

    với p=3k+2 thì p+4=3k+2+4=3k+6 '''''''''''''''''''''''''''''''''''''''''''' =>p+4 là hợp số

                         Vậy p=3 thỏa mãn đề bài 

 

     các phần còn lại tương tự

 

Bình luận (0)
TA
Xem chi tiết
.
2 tháng 8 2020 lúc 15:29

+) Với \(p=2\) \(\Rightarrow\hept{\begin{cases}24.2^2+1=97\\3.2+1=7\end{cases}}\)

Vì \(97\) và \(7\) là các số nguyên tố nên \(p=2\)  (thỏa mãn)

+) Với \(p\) là số nguyên tố lớn hơn 2, suy ra \(p\) có dạng \(2k+1\) với k là số tự nhiên khác 0

\(\Rightarrow3p+1=3.\left(2k+1\right)+1=6k+3+1=6k+4⋮2\)

Mà \(k\) lớn hơn 0 nên \(6k+4>2\) nên \(3p+1\) là hợp số (loại)

Vậy \(p=2\).

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
H24
16 tháng 12 2020 lúc 11:02

* p = 2 thì 4p^2 + 1 = 25 không là SNT

* p = 3 thì 6p^2 + 1 = 55 không là SNT

* p = 5 thì 4p^2 + 1=101 và 6p^2 + 1 = 151 là SNT

Vậy p = 5 thỏa điều kiện đề bài.

* P > 5 => p = 5k ±1, hoặc p = 5k ± 2.

Khi: p = 5k ± 1thì

4p^2 + 1 = 4(25k^2 ± 10k + 1) + 1= 4.25k^2 ± 4.10k + 5 > 5 và chia hết cho 5

Khi p = 5k ± 2 thì:

6k^2 + 1 =6(25k^2 ± 10k + 4) + 1 = 6.25k^2 ± 6.10k + 25 > 5 và chia hết cho 5

Vậy khi p>5 thì 4p^2+1 và 6p^2+1 không đồng thời là SNT.

=> p = 5 là SNT cần tìm.

Bình luận (0)
MH
Xem chi tiết
NL
12 tháng 1 2022 lúc 0:02

1.

\(x^4+4y^4=x^4+4x^2y^2+y^4-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)

\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)

Do x, y nguyên dương nên số đã cho là SNT khi:

\(x^2-2xy+2y^2=1\Rightarrow\left(x-y\right)^2+y^2=1\)

\(y\in Z^+\Rightarrow y\ge1\Rightarrow\left(x-y\right)^2+y^2\ge1\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=1\)

Thay vào kiểm tra thấy thỏa mãn

2. \(N=n^4+4^n\)

- Với n chẵn hiển nhiên N là hợp số

- Với \(n\) lẻ: \(\Rightarrow n=2k+1\)

\(N=n^4+4^n=n^4+4^{2k+1}=n^4+4.4^{2k}+4n^2.4^k-n^2.4^{k+1}\)

\(=\left(n^2+2.4^k\right)^2-\left(n.2^{k+1}\right)^2=\left(n^2+2.4^k-n.2^{k+1}\right)\left(n^2+2.4^k+n.2^{k+1}\right)\)

Mặt khác:

\(n^2+2.4^k-n.2^{k+1}\ge2\sqrt{2n^2.4^k}-n.2^{k+1}=2\sqrt{2}n.2^k-n.2^{k+1}\)

\(=n.2^{k+1}\left(\sqrt{2}-1\right)\ge2\left(\sqrt{2}-1\right)>1\)

\(\Rightarrow N\) là tích của 2 số dương lớn hơn 1

\(\Rightarrow\) N là hợp số

Bình luận (0)
NL
12 tháng 1 2022 lúc 15:09

Bài 4 chắc không có cách "đại số" nào (tức là dựa vào lý luận chia hết tổng quát) để giải. Mình nghĩ vậy (có lẽ có, nhưng mình ko biết).

Chắc chỉ sáng lọc và loại trừ theo quy tắc kiểu: do đổi vị trí bất kì đều là SNT nên không thể chứa các chữ số chẵn và chữ số 5, như vậy số đó chỉ có thể chứa các chữ số 1,3,7,9

Nó cũng không thể chỉ chứa các chữ số  3 và 9 (sẽ chia hết cho 3)

Từ đó sàng lọc được các số: 113 (và các số đổi vị trí), 337 (và các số đổi vị trí)

Bình luận (9)
HH
Xem chi tiết
HH
28 tháng 10 2016 lúc 15:16

Ai nhanh minh  cho

Bình luận (0)
LV
15 tháng 10 2021 lúc 8:28

\(a)\)Vì \(p\)là số nguyên tố

\(\Leftrightarrow\)\(p\in\left\{2;3;5;7;...\right\}\)

\(+)\)\(p=2\Leftrightarrow p+2=2+2=4\)( hợp số ) ( loại )

\(+)\)\(p=3\Leftrightarrow\hept{\begin{cases}p+2=3+2=5\\p+3=3+10=13\end{cases}}\)( thỏa mãn )

\(+)\)\(p>3\)mà \(p\)là số nguyên tố nên \(p\)có 2 dạng:

\(+)\)\(p=3k+1\left(k\in N\right)\Leftrightarrow p+2=3k+3⋮3\)( hợp số )

\(+)\)\(p=3k+2\Leftrightarrow p+10=3k+12⋮3\)( hợp số )

Vậy \(p=3\)\(\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
LV
15 tháng 10 2021 lúc 8:38

\(b)\)Với \(p=2\Rightarrow p+10=2+10=12\)( ko là số nguyên tố  )   \(\Rightarrow\) ( loại )

Với \(p=3\Rightarrow p+10=3+10=13\)

\(\Rightarrow\)\(p+20=20+3=23\)( đều là các số nguyên tố )   \(\Rightarrow\) ( chọn )

Nếu \(p\)chia cho 3 dư 1 \(\Rightarrow\)\(p=3k+1\left(k\in N\right)\)

\(\Rightarrow\)\(p+20=3k+1+20\)

\(=\)\(3k+21=3\left(k+7\right)⋮3\)

( Vì \(3⋮3;k\in N\Rightarrow k+7\in N\))

\(\Rightarrow\)\(3\left(k+7\right)\)là hợp số ; hay \(p+20\)là hợp số \(\Rightarrow\)( loại )

Nếu \(p\)chia 3 dư 2 \(\Rightarrow\)\(p=3k+2\left(k\in N\right)\)

\(\Rightarrow\)\(p+10=3k+2+10\)

\(=\)\(3k+12=3\left(k+4\right)⋮3\)

( Vì \(3⋮3;k\in N\Rightarrow k+4\in N\))

\(\Rightarrow\)\(3\left(k+4\right)\)là hợp số; hay \(p+10\)là hợp số \(\Rightarrow\)( loại )

Vậy \(p=3\)thỏa mãn đề bài \(\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
DV
Xem chi tiết
SG
10 tháng 8 2016 lúc 16:43

+ Với p = 2 thì p + 1 = 3; p + 5 = 7, đều là số nguyên tố, chọn

+ Với p > 2 thì p lẻ => p + 1 và p + 5 đều là số chẵn, chia hết cho 2

Mà 1 < 2 < p + 1; p + 5 => p + 1 và p + 5 là hợp số, loại

Vậy p = 2

Bình luận (0)
NM
10 tháng 8 2016 lúc 16:44

Nếu p là số nguyên tố lớn hơn 3 thì p=3k+1 hoặc 3k+2

Nếu p=3k+1 thì p+5=3k+1+5=3k+6 chia hết cho 3, ko là số nguyên tố

Nếu p=3k+2 thì p+1=3k+2+1=3k+3 chia hết cho 3, ko là nguyên tố

Vậy p là số nguyên tố nhỏ hơn hoặc bằng 3, vậy p=2 hoặc p=3

Với p=2 thì p+1=2+1=3, là SNt

p+5=2+5=7, thỏa mãn là SNT

p=3 thì p+1=4, là hợp số, loại

Do đó p=2

Bình luận (0)
Xem chi tiết
H24
26 tháng 2 2021 lúc 17:13

Bài 1:

Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố

2 + 4 = 6 không là số nguyên tố

Vậy p = 2 không thỏa mãn

Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố

3 + 4 = 7 là số nguyên tố

Vậy p = 3 thỏa mãn

Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2 

Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố

Vậy p = 3k + 1 không thỏa mãn

Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố

Vậy p = 3k + 2 không thỏa mãn

Vậy p = 3 thỏa mãn duy nhất.

Bình luận (0)
H24
26 tháng 2 2021 lúc 17:19

Bài 2:

Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3

p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3

Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3

Vì thế 4p + 1 phải chia hết cho 3

Mà p > 3 nên 4p + 1 > 3

=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.

Bình luận (0)
H24
26 tháng 2 2021 lúc 17:30

Bài 3:

a) Nếu p = 2 thì p + 4 = 2 + 4 = 6 không là số nguyên tố

p + 8 = 2 + 8 = 10 không là số nguyên tố

Vậy p = 2 không thỏa mãn

 Nếu p = 3 thì p + 4 = 3 + 4 = 7 là số nguyên tố

p + 8 = 3 + 8 = 11 là số nguyên tố

Vậy p = 3 thỏa mãn

Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2

Nếu p = 3k + 1 thì p + 8 = 3k + 1 + 8 = 3k + 9 = 3(k + 3) không là số nguyên tố

p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố

Vậy p > 3 không thỏa mãn

Vậy p = 3 thỏa mãn duy nhất

Bình luận (0)
NH
Xem chi tiết
PT
14 tháng 4 2023 lúc 20:16

Câu 1:* Nếu p=2 => p+2=2+2=4 là hợp số (trái với đề bài)

* Nếu p=3 => p+2=3+2=5 là số nguyên tố 

                 => p+4=3+4=7 là số nguyên tố

=> p=3 thỏa mãn đề bài

* Nếu p là số nguyên tố; p>3 => p có dạng 3k+1 hoặc 3k+2 (k ∈ N*)

* Nếu p=3k+1 => p+2=3k+1+2=3k+3=3(k+1)

Vì 3 ⋮ 3 => 3(k+1) ⋮ 3 => p+2 ⋮ 3, mà p+2 là số nguyên tố lớn hơn 3 => p+2 là hợp số (trái với đề bài)

* Nếu p=3k+2 => p+4=3k+2+4=3k+6=3k+3.2=3(k+2)

Vì 3 ⋮ 3 => 3(k+2) ⋮ 3 => p+4 ⋮ 3, mà p+4 là số nguyên tố lớn hơn 3 => p+4 là hợp số (trái với đề bài)

Vậy p=3 thỏa mãn đề bài

 

 

Bình luận (0)