Tính : \(S_n=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}\)
Bằng phương pháp quy nạp, chứng minh các đẳng thức sau với \(n\in N^{\circledast}\)
a) \(A_n=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+....+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}=\dfrac{n\left(n+3\right)}{4\left(n+1\right)}\)
b) \(B_n=1+3+6+10+...+\dfrac{n\left(n+1\right)}{2}=\dfrac{n\left(n+1\right)\left(n+2\right)}{6}\)
c) \(S_n=\sin x+\sin2x+\sin3x+...+\sin nx=\dfrac{\sin\dfrac{nx}{2}\sin\dfrac{\left(n+1\right)x}{2}}{\sin\dfrac{x}{2}}\)
b)
Với n = 1.
\(VT=B_n=1;VP=\dfrac{1\left(1+1\right)\left(1+2\right)}{6}=1\).
Vậy với n = 1 điều cần chứng minh đúng.
Giả sử nó đúng với n = k.
Nghĩa là: \(B_k=\dfrac{k\left(k+1\right)\left(k+2\right)}{6}\).
Ta sẽ chứng minh nó đúng với \(n=k+1\).
Nghĩa là:
\(B_{k+1}=\dfrac{\left(k+1\right)\left(k+1+1\right)\left(k+1+2\right)}{6}\)\(=\dfrac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{6}\).
Thật vậy:
\(B_{k+1}=B_k+\dfrac{\left(k+1\right)\left(k+2\right)}{2}\)\(=\dfrac{k\left(k+1\right)\left(k+2\right)}{6}+\dfrac{\left(k+1\right)\left(k+2\right)}{2}\)\(=\dfrac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{6}\).
Vậy điều cần chứng minh đúng với mọi n.
c)
Với \(n=1\)
\(VT=S_n=sinx\); \(VP=\dfrac{sin\dfrac{x}{2}sin\dfrac{2}{2}x}{sin\dfrac{x}{2}}=sinx\)
Vậy điều cần chứng minh đúng với \(n=1\).
Giả sử điều cần chứng minh đúng với \(n=k\).
Nghĩa là: \(S_k=\dfrac{sin\dfrac{kx}{2}sin\dfrac{\left(k+1\right)x}{2}}{sin\dfrac{x}{2}}\).
Ta cần chứng minh nó đúng với \(n=k+1\):
Nghĩa là: \(S_{k+1}=\dfrac{sin\dfrac{\left(k+1\right)x}{2}sin\dfrac{\left(k+2\right)x}{2}}{sin\dfrac{x}{2}}\).
Thật vậy từ giả thiết quy nạp ta có:
\(S_{k+1}-S_k\)\(=\dfrac{sin\dfrac{\left(k+1\right)x}{2}sin\dfrac{\left(k+2\right)x}{2}}{sin\dfrac{x}{2}}-\dfrac{sin\dfrac{kx}{2}sin\dfrac{\left(k+1\right)x}{2}}{sin\dfrac{x}{2}}\)
\(=\dfrac{sin\dfrac{\left(k+1\right)x}{2}}{sin\dfrac{x}{2}}.\left[sin\dfrac{\left(k+2\right)x}{2}-sin\dfrac{kx}{2}\right]\)
\(=\dfrac{sin\dfrac{\left(k+1\right)x}{2}}{sin\dfrac{x}{2}}.2cos\dfrac{\left(k+1\right)x}{2}sim\dfrac{x}{2}\)\(=2sin\dfrac{\left(k+1\right)x}{2}cos\dfrac{\left(k+1\right)x}{2}=2sin\left(k+1\right)x\).
Vì vậy \(S_{k+1}=S_k+sin\left(k+1\right)x\).
Vậy điều cần chứng minh đúng với mọi n.
Bài 1:Tính giá trị biểu thức:
\(1\dfrac{13}{15}.\left(0,5\right)^2.3+\left(\dfrac{8}{15}-1\dfrac{19}{60}\right):1\dfrac{23}{14}\)
Bài 2: Tính Tổng:
\(S_n=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}\)
Trình bày lời giải và đừng làm tắt bước nhé!
Bài 2.
\(S_n=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}\)
\(\Rightarrow S_n=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\)\(\Rightarrow S_n=\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\)
Bài 1:
\(1\dfrac{13}{15}.\left(0,5\right)^2.3+\left(\dfrac{8}{15}-1\dfrac{19}{60}\right):1\dfrac{23}{14}\)
\(=\dfrac{28}{15}.\dfrac{1}{4}.3+\left(\dfrac{8}{15}-\dfrac{79}{60}\right):\dfrac{47}{24}\)
\(=\dfrac{28}{15}.\dfrac{1}{4}.3+\left(\dfrac{-47}{60}\right):\dfrac{47}{24}\)
\(=\dfrac{7}{15}.3+\left(\dfrac{-47}{60}\right):\dfrac{47}{24}\)
\(=\dfrac{7}{5}+\left(\dfrac{-47}{60}\right):\dfrac{47}{24}\)
\(=\dfrac{7}{5}+\dfrac{-2}{5}\)
\(=\dfrac{5}{5}=1\)
Tính tổng \(B=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}\)
\(B=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+......+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}\)
\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+....+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\)
\(=\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\)
\(=\dfrac{1}{2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\)
Vậy..
\(B=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(B=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)=\dfrac{n^2+3n+2-2}{4\left(n+1\right)\left(n+2\right)}=\dfrac{n\left(n+3\right)}{4\left(n+1\right)\left(n+2\right)}\)
2B=\(\dfrac{2}{1.2.3}\)+\(\dfrac{2}{2.3.4}\)+....+\(\dfrac{2}{n\left(n+1\right)\left(n+2\right)}\)
=\(\dfrac{1}{1.2}\)-\(\dfrac{1}{2.3}\)+\(\dfrac{1}{2.3}\)-\(\dfrac{1}{3.4}\)+...+\(\dfrac{1}{n\left(n+1\right)}\)-\(\dfrac{1}{\left(n+1\right)\left(n+2\right)}\)
=\(\dfrac{1}{2}\)-\(\dfrac{1}{n^2+3n+2}\)
=\(\dfrac{n^2+3n}{2\left(n^2+3n+2\right)}\)
=>B=\(\dfrac{n^2+3n}{2\left(n^2+3n+2\right)}\):2
đến đây bạn tự tính nha !
Tìm số tự nhiên n sao cho:
\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+....+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}=\dfrac{637}{2550}\)
\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}=\dfrac{637}{2550}\)
\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)=\dfrac{637}{2550}\)
\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)=\dfrac{637}{2550}\)
\(\Leftrightarrow\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}=\dfrac{637}{1275}\)
\(\Leftrightarrow\dfrac{1}{\left(n+1\right)\left(n+2\right)}=\dfrac{1}{2}-\dfrac{637}{1275}=\dfrac{1}{2550}\)
\(\Leftrightarrow\left(n+1\right)\left(n+2\right)=2550\)
\(\Leftrightarrow n^2+3n-2548=0\)
\(\Rightarrow n=49\)
Thực hiện phép tính
B = \(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}\)
Ta có: \(\dfrac{1}{n.\left(n+1\right).\left(n+2\right)}=\dfrac{1}{2}.\left(\dfrac{\left(n+2\right)-n}{n\left(n+1\right)\left(n+2\right)}\right)=\dfrac{1}{2}\left(\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(\Rightarrow B=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}\)
\(=\dfrac{1}{2}.\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)\)\(=\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)=\dfrac{n^2+3n}{4\left(n+1\right)\left(n+2\right)}\)
\(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=\dfrac{1}{3}\left(1+\dfrac{1}{u_n}\right)u_n\end{matrix}\right.\). gọi \(S_n=u_1+\dfrac{u_2}{2}+\dfrac{u_3}{3}+...+\dfrac{u_n}{n}\). tìm \(\lim\limits S_n\)
Với số tự nhiên n, \(n\ge3\). Đặt \(S_n=\dfrac{1}{3\left(1+\sqrt{2}\right)}+\dfrac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+...+\dfrac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}\). Chứng minh: \(S_n< \dfrac{1}{2}\)
Tính : \(S_n=\dfrac{1}{1.2.3.4}+\dfrac{1}{2.3.4.5}+...+\dfrac{1}{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)
\(S_n=\dfrac{1}{1.2.3.4}+\dfrac{1}{2.3.4.5}+....+\dfrac{1}{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)
\(S_n=\dfrac{1}{3}\left(\dfrac{1}{1.2.3}-\dfrac{1}{2.3.4}-\dfrac{1}{3.4.5}+....+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}-\dfrac{1}{n\left(n+2\right)\left(n+3\right)}\right)\)\(S_n=\dfrac{1}{3}\left(\dfrac{1}{2.3.4}-\dfrac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)}\right)\)
\(S_n=\dfrac{1}{3}\left(\dfrac{1}{24}-\dfrac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)}\right)\)
\(S_n=\dfrac{1}{72}-\dfrac{1}{3\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)
Tìm x:\(\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}-3x=\left(1.2.3+2.3.4+...+98.99.100\right).\left(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{98.99.100}\right)\)