Bài 7: Phép nhân các phân thức đại số

NB

Tính tổng \(B=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}\)

NH
1 tháng 12 2018 lúc 19:08

\(B=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+......+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}\)

\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+....+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\)

\(=\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\)

\(=\dfrac{1}{2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\)

Vậy..

Bình luận (0)
NL
1 tháng 12 2018 lúc 19:10

\(B=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)\)

\(B=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)=\dfrac{n^2+3n+2-2}{4\left(n+1\right)\left(n+2\right)}=\dfrac{n\left(n+3\right)}{4\left(n+1\right)\left(n+2\right)}\)

Bình luận (0)
NC
1 tháng 12 2018 lúc 19:26

2B=\(\dfrac{2}{1.2.3}\)+\(\dfrac{2}{2.3.4}\)+....+\(\dfrac{2}{n\left(n+1\right)\left(n+2\right)}\)

=\(\dfrac{1}{1.2}\)-\(\dfrac{1}{2.3}\)+\(\dfrac{1}{2.3}\)-\(\dfrac{1}{3.4}\)+...+\(\dfrac{1}{n\left(n+1\right)}\)-\(\dfrac{1}{\left(n+1\right)\left(n+2\right)}\)

=\(\dfrac{1}{2}\)-\(\dfrac{1}{n^2+3n+2}\)

=\(\dfrac{n^2+3n}{2\left(n^2+3n+2\right)}\)

=>B=\(\dfrac{n^2+3n}{2\left(n^2+3n+2\right)}\):2

hahađến đây bạn tự tính nha !

Bình luận (0)

Các câu hỏi tương tự
BA
Xem chi tiết
KN
Xem chi tiết
NH
Xem chi tiết
TD
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
TK
Xem chi tiết