Chứng minh :
(x+y) ^2-(x-y)^2=4xy
chứng minh rằng : (x+y)^2= (x-y)^2 + 4xy
Ta có: \(\left(x-y\right)^2+4xy=x^2-2xy+y^2+4xy=x^2+2xy+y^2=\left(x+y\right)^2\)
\(\begin{array}{l} \text{Xét:}\\ VP=(x+y)^2-4xy\\ =x^2+2xy+y^2-4xy\\ =x^2+(2xy-4xy)+y^2\\ =x^2-2xy+y^2\\ =(x-y)^2=VT\ \text{(đpcm)}\end{array}\)
Ta có: \(\left(x+y\right)^2-4xy\)
\(=x^2+2xy+y^2-4xy\)
\(=x^2-2xy+y^2\)
\(=\left(x-y\right)^2\)(đpcm)
chứng minh
(x - 4xy/x+y +y):(x/x+y - y/y-x - 2xy/x^2-y^2) =x-y
Sai đề sửa + làm luôn
Biến đổi VT ta có:
VT= \(\left(\dfrac{x^2-3xy}{x+y}+y\right):\left(\dfrac{x}{x+y}-\dfrac{y}{y-x}-\dfrac{2xy}{x^2-y^2}\right)\)
= \(\left(\dfrac{x^2-3xy+xy+y^2}{x+y}\right):\left(\dfrac{x}{x+y}+\dfrac{y}{x-y}-\dfrac{2xy}{\left(x-y\right)\left(x+y\right)}\right)\)
= \(\left(\dfrac{x^2-2xy+y^2}{x+y}\right):\left(\dfrac{x^2-xy+xy+y^2-2xy}{\left(x-y\right)\left(x+y\right)}\right)\)
= \(\dfrac{\left(x-y\right)^2}{x+y}:\left(\dfrac{\left(x-y\right)^2}{\left(x-y\right)\left(x+y\right)}\right)\)
= \(\dfrac{\left(x-y\right)^2}{x+y}.\dfrac{x+y}{x-y}\) = x - y = VP
Vậy...
Chứng minh rằng:
x2y4 - 4xy3 + 2(x2+2)y2 + 4xy + x2 ≥ 0 với mọi số thực x,y.
Đặt \(f\left(x\right)=x^2y^4-4xy^3+2x^2y^2+4y^2+4xy+x^2\)
\(f\left(x\right)=\left(y^4+2y^2+1\right)x^2-4\left(y^3-y\right)x+4y^2\)
\(a=y^4+2y^2+1>0;\forall y\)
\(\Delta'=4\left(y^3-y\right)^2-4y^2\left(y^4+2y^2+1\right)\)
\(=4y^6+4y^2-8y^4-4y^6-8y^4-4y^2=-16y^4\le0;\forall y\)
\(\Rightarrow f\left(x\right)\ge0\) ; \(\forall x;y\)
Chứng minh rằng : ( x - y )2 - ( x + y )2 = -4xy
Ta có :
\(VT=\left(x-y\right)^2-\left(x+y\right)^2\)
\(=x^2-2xy+y^2-x^2-2xy-y^2\)
\(=-4xy\)
Vậy : \(\left(x-y\right)^2-\left(x+y\right)^2=-4xy\) ( đpcm )
Ta có: (x-y)2 - (x+y)2 = x2-2xy+y2-(x2+2xy+y2)
= x2-2xy+y2-x2-2xy-y2
= -4xy
Vậy (x-y)2 - (x+y)2 = -4xy
Chứng minh rằng: (x+y)2 - (x-y)2=4xy
vế trái = (x+y)2-(x-y)2=x2+2xy+y2-(x2-2xy+y2)=x2+2xy+y2-x2+2xy-y2=4xy = vế phải
=> Điều phải chứng minh
Bài 4: Chứng minh rằng
a) (x-y)2+4xy=(x+y)2
b) Tính giá trị của biểu thức (x+y)2 biết x-y=5; xy=3
a) Ta có:
VT = (x - y)² + 4xy
= x² - 2xy + y² + 4xy
= x² + 2xy + y²
= (x + y)²
= VP
b) Ta có:
(x + y)² = (x - y)² + 4xy
= 5² + 4.3
= 25 + 12
= 37
Chứng minh rằng \(f\left(x,y\right)=x^2y^4+2y^2\left(x^2+2\right)+x^2+4xy>4xy^3\)
Bài này áp dụng lý thuyết đồ thị parabol lớp 10 thì khá đơn giản, chỉ việc tính delta và chứng minh nó \(\le0\) là xong, lớp 9 cứ biến đổi tương đương, đỡ phải tìm BĐT đau đầu:
Dấu "=" có xảy ra tại \(x=y=0\) cho nên BPT đúng phải là:
\(x^2y^4+2y^2\left(x^2+2\right)+x^2+4xy\ge4xy^3\)
\(\Leftrightarrow\left(y^4+2y^2+1\right)x^2-4y\left(y^2-1\right)x+4y^2\ge0\)
\(\Leftrightarrow\left(y^2+1\right)^2x^2-4y\left(y^2-1\right)x+4y^2\ge0\)
\(\Leftrightarrow\left(y^2+1\right)^2\left[x^2-\frac{4y\left(y^2-1\right)}{\left(y^2+1\right)^2}x+\frac{4y^2\left(y^2-1\right)^2}{\left(y^2+1\right)^2}\right]+4y^2-\frac{4y^2\left(y^2-1\right)^2}{\left(y^2+1\right)^2}\ge0\)
\(\Leftrightarrow\left(y^2+1\right)^2\left[x-\frac{2y\left(y^2-1\right)}{y^2+1}\right]^2+\frac{16y^4}{\left(y^2+1\right)^2}\ge0\) (luôn đúng)
Chứng minh rằng với mọi số thực x,y ta luôn có (x+y)2
≥ 4xy
\(\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow x^2+2xy+y^2\ge4xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng với \(\forall x,y\))
-Vậy BĐT đã được c/m.
-Dấu "=" xảy ra khi \(x=y\)
ta co
vt (x+y)2=x2+y2+2xy
=x2-2xy+y2+4xy≥ 4xy (dpcm)