Những câu hỏi liên quan
TY
Xem chi tiết
AB
27 tháng 10 2017 lúc 8:10

Bài 2:Tìm x biết

\\(\\left(4x+3\\right)^3+\\left(5-7x\\right)^3+\\left(3x-8\\right)^3=0\\)

\\(\\Leftrightarrow\\left[\\left(4x\\right)^3+3.\\left(4x\\right)^2.3+3.4x.3^2+3^3\\right]+\\left[5^3-3.5^2.7x+3.5.\\left(7x\\right)^2-\\left(7x\\right)^3\\right]+\\left[\\left(3x\\right)^3-3.\\left(3x\\right)^2.8+3.3x.8^2-8^3\\right]=0\\)

\\(\\Leftrightarrow64x^3+144x^2+108x+27+125-525x+735x^2-343x^3+27x^3-216x^2+576x-512=0\\)

\\(\\Leftrightarrow-252x^3+663x^2+159x-360=0\\)

\\(\\Leftrightarrow3\\left(-84x^3+221x^2+53x-120\\right)=0\\)

 

Bình luận (1)
H24
26 tháng 7 2019 lúc 8:38

Bài 2: Đặt \(4x+3=a;5-7x=b;3x-8=c\Rightarrow a+b+c=0\)

Kết hợp với đề bài ta có \(\left\{{}\begin{matrix}a^3+b^3+c^3=0\\a+b+c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^3+b^3+c^3-3abc+3abc=0\\a+b+c=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc=0\left(1\right)\\a+b+c=0\left(2\right)\end{matrix}\right.\)

Thay (2) vào (1) suy ra \(3abc=0\Leftrightarrow a=0\text{hoặc }b=0\text{hoặc }c=0\)

+) a = 0 suy ra \(x=-\frac{3}{4}\)

+) b = 0 suy ra \(x=\frac{5}{7}\)

+) c = 0 suy ra \(x=\frac{8}{3}\)

Vậy...

Bình luận (0)
LH
Xem chi tiết
TH
11 tháng 4 2021 lúc 19:34

Do 2 + 1 chia hết cho 3 nên theo bổ đề LTE ta có \(v_3\left(2^{3^n}+1\right)=v_3\left(2+1\right)+v_3\left(3^n\right)=n+1\).

Do đó \(2^{3^n}+1⋮3^{n+1}\) nhưng không chia hết cho \(3^{n+2}\).

Bình luận (0)
NP
Xem chi tiết
DD
12 tháng 7 2017 lúc 8:03

\(b.\)\(\left(2n-1\right)^3-\left(2n-1\right)=\left(2n-1\right)\left[\left(2n-1\right)^2-1\right]\)

\(=\left(2n-1\right)\left[\left(2n-1\right)^2-1^2\right]=\left(2n-1\right)\left(2n-1-1\right)\left(2n-1+1\right)\)

\(\text{Áp dụng hằng đẳng thức }\)\(a^2-b^2=\left(a-b\right)\left(a+b\right)\)

\(=\left(2n-1\right)\left(2n-2\right).2n=\left(2n-1\right).2\left(n-1\right).2n\)

\(=\left(2n-1\right).4.n\left(n-1\right)\)

\(n\left(n-1\right)⋮2\)(vì là tích 2 số liên tiếp)

\(\Rightarrow\left(2n-1\right).4.n\left(n-1\right)⋮\left(4.2\right)=8\)

\(\left(2n-1\right).4.n\left(n-1\right)⋮8\RightarrowĐPCM\)

Bình luận (0)
CT
Xem chi tiết
TL
22 tháng 10 2017 lúc 17:25

\(\text{ Ta có : }\left(n+2\right)^2-\left(n+2\right)^2=0⋮8\left(đpcm\right)\)

Vậy...............

Sai đề rồi :))

Bình luận (0)
TL
22 tháng 10 2017 lúc 17:53

\(\left(n+2\right)^2-\left(n-2\right)^2⋮8\)

\(\text{Ta có : }\left(n+2\right)^2-\left(n-2\right)^2\\ \\ =\left(n+2+n-2\right)\left(n+2-n+2\right)\\ \\ =2n\cdot4\\ \\ =8n⋮8\left(đpcm\right)\)

Vậy \(\left(n+2\right)^2-\left(n-2\right)^2⋮8\)

Bình luận (0)
HD
Xem chi tiết
KB
19 tháng 9 2018 lúc 22:05

\(\left(2-n\right)\left(n^2-3n+1\right)+n\left(n^2+12\right)+8\)

\(=2n^2-n^3-6n+3n^2+2-n+n^3+12n+8\)

\(=\left(2n^2+3n^2\right)+\left(n^3-n^3\right)+\left(12n-6n-n\right)+\left(8+2\right)\)

\(=5n^2+5n+10\)

\(=5\left(n^2+n+2\right)⋮5\forall n\in Z\left(đpcm\right)\)

Bình luận (0)
LD
Xem chi tiết
NM
11 tháng 10 2021 lúc 15:53

\(c,=\left(31,8-21,8\right)^2=10^2=100\\ 12,\\ a,\left(n+2\right)^2-\left(n-2\right)^2\\ =\left(n+2-n+2\right)\left(n+2+n-2\right)\\ =4\cdot2n=8n⋮8\\ b,\left(n+7\right)^2-\left(n-5\right)^2\\ =\left(n+7-n+5\right)\left(n+7+n-5\right)\\ =12\left(2n+2\right)=24\left(n+1\right)⋮24\)

Bình luận (0)
NV
22 tháng 10 2021 lúc 13:50

tui chiuj

Bình luận (0)
 Khách vãng lai đã xóa
CT
Xem chi tiết
DH
15 tháng 7 2017 lúc 18:25

Ta có : \(n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n^4-1\right)=n^5-n\)

Vì \(n^5=n^{4+1}\) luôn có số tận cùng giống n

\(\Rightarrow n^5-n=\overline{.....0}⋮5\)

Hay \(n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮5\) (đpcm)

Bình luận (0)
ML
Xem chi tiết
HH
21 tháng 7 2018 lúc 20:36

(n+2)2-(n-2)2

=(n+2+n-2)(n+2-n+2)

=2n.4

=8n ⋮ 8

=> Đpcm

Bình luận (0)
MV
21 tháng 7 2018 lúc 20:44

Có: \(\left(n+2\right)^2-\left(n-2\right)^2\)

\(=\left(n+2+n-2\right)\left(n+2-n+2\right)\)

\(=2n.4\)

\(=8n⋮8n\) \(\left(8⋮8\right)\)

Vậy \(\left(n+2\right)^2-\left(n-2\right)^2⋮8\) (ĐPCM)

Bình luận (0)
NQ
Xem chi tiết
H24
6 tháng 3 2021 lúc 21:45

\(A=\left(2^n-1\right)\left(2^n+1\right)\)

\(=\left(2^n-1\right)\left(2+1\right)\left(2^n-2^{n-1}+2^{n-2}-...-2+1\right)\)

\(=\left(2^n-1\right)3\left(2^n-2^{n-1}+2^{n-2}-...-2+1\right)⋮3\forall n\in N\)

Vậy \(A⋮3\forall n\in N\)

Bình luận (0)
 Khách vãng lai đã xóa