Phép nhân và phép chia các đa thức

TY

Bài 1 : Chứng minh rằng với mọi số nguyên n

a) \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\) chia hết cho 5

b)\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)chia hết cho 6

c)\(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\)chia hết cho 12

Bài 2:

Tìm x biết : \(\left(4x+3_{^{ }}\right)^3+\left(5-7x\right)^3+\left(3x-8\right)^3=0\)

AB
27 tháng 10 2017 lúc 8:10

Bài 2:Tìm x biết

\\(\\left(4x+3\\right)^3+\\left(5-7x\\right)^3+\\left(3x-8\\right)^3=0\\)

\\(\\Leftrightarrow\\left[\\left(4x\\right)^3+3.\\left(4x\\right)^2.3+3.4x.3^2+3^3\\right]+\\left[5^3-3.5^2.7x+3.5.\\left(7x\\right)^2-\\left(7x\\right)^3\\right]+\\left[\\left(3x\\right)^3-3.\\left(3x\\right)^2.8+3.3x.8^2-8^3\\right]=0\\)

\\(\\Leftrightarrow64x^3+144x^2+108x+27+125-525x+735x^2-343x^3+27x^3-216x^2+576x-512=0\\)

\\(\\Leftrightarrow-252x^3+663x^2+159x-360=0\\)

\\(\\Leftrightarrow3\\left(-84x^3+221x^2+53x-120\\right)=0\\)

 

Bình luận (1)
H24
26 tháng 7 2019 lúc 8:38

Bài 2: Đặt \(4x+3=a;5-7x=b;3x-8=c\Rightarrow a+b+c=0\)

Kết hợp với đề bài ta có \(\left\{{}\begin{matrix}a^3+b^3+c^3=0\\a+b+c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^3+b^3+c^3-3abc+3abc=0\\a+b+c=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc=0\left(1\right)\\a+b+c=0\left(2\right)\end{matrix}\right.\)

Thay (2) vào (1) suy ra \(3abc=0\Leftrightarrow a=0\text{hoặc }b=0\text{hoặc }c=0\)

+) a = 0 suy ra \(x=-\frac{3}{4}\)

+) b = 0 suy ra \(x=\frac{5}{7}\)

+) c = 0 suy ra \(x=\frac{8}{3}\)

Vậy...

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
DN
Xem chi tiết
NG
Xem chi tiết
RO
Xem chi tiết
AH
Xem chi tiết
HA
Xem chi tiết
CT
Xem chi tiết
KN
Xem chi tiết
VL
Xem chi tiết