So sánh các số tự nhiên a và b, biết rằng:
\(\dfrac{1+2+3+...+a}{a}< \dfrac{1+2+3+...+b}{b}\)
so sánh các số tự nhên a và b biết
\(\dfrac{1+2+3+...+a}{a}\) < \(\dfrac{1+2+3+...+b}{b}\)
Biện luận trước khi giải: \(a,b\inℕ^∗\). Khi a hoặc b bằng 0 thì biểu thức không xác định.
Bài làm:
Ta có \(1+2+3+...+a=\dfrac{a\left(a+1\right)}{2}\)
Và \(1+2+3+...+b=\dfrac{b\left(b+1\right)}{2}\)
Suy ra \(\dfrac{a\left(a+1\right)}{2a}< \dfrac{b\left(b+1\right)}{2b}\) <=> \(\dfrac{a+1}{2}< \dfrac{b+1}{2}\)
<=> \(a+1< b+1\) <=> a < b
Tìm các cặp số tự nhiên (a,b) biết rằng : \(\dfrac{1}{a+1}+\dfrac{1}{b+1}=\dfrac{1}{2}\)
\(\dfrac{1}{a+1}+\dfrac{1}{b+1}=\dfrac{1}{2}\left(a,b\ne-1\right)\\ \Rightarrow2\left(a+b+2\right)=\left(a+1\right)\left(b+1\right)\\ \Rightarrow2a+2b+4=ab+a+b+1\\ \Rightarrow a+b-ab+3=0\\ \Rightarrow\left(b-1\right)-a\left(b-1\right)=-4\\ \Rightarrow\left(a-1\right)\left(b-1\right)=4=1\cdot4=2\cdot2\)
\(a-1\) | 1 | 4 | 2 |
\(b-1\) | 4 | 1 | 2 |
\(a\) | 2 | 5 | 3 |
\(b\) | 5 | 2 | 3 |
Vậy \(\left(a;b\right)=\left(2;5\right);\left(5;2\right);\left(3;3\right)\)
\(\dfrac{1}{a+1}+\dfrac{1}{b+1}=\dfrac{1}{2}\Leftrightarrow\dfrac{2\left(a+1\right)+2\left(b+1\right)-\left(a+1\right)\left(b+1\right)}{2\left(a+b\right)\left(b+1\right)}=0\)
\(\Leftrightarrow a+b-ab+3=0\Leftrightarrow a\left(1-b\right)-\left(1-b\right)=-4\Leftrightarrow\left(a-1\right)\left(1-b\right)=-4\)
Do \(a,b\in N\) nên ta có bảng sau:
a-1 | -1 | 1 | -4 | 4 | -2 | 2 |
1-b | 4 | -4 | 1 | -1 | 2 | -2 |
a | 0 | 2 | -3(loại) | 5 | -1(loại) | 3 |
b | -3(loại) | 5 | 0 | 2 | -1(loại) | 3 |
Vậy \(\left(a;b\right)\in\left\{\left(2;5\right);\left(5;2\right);\left(3;3\right)\right\}\)
So sánh các số tự nhiên A và B , biết rằng :
a ) A = 1 + 2 + 3 + ..... + 1000 , B = 1.2.3....11;
b ) A = 1.2.3... 20, B = 1 + 2 + 3 + 1000000
A= số số hạng của A là (1000-1):1+1=1000
tổng A là: 1000+1x1000:2=500500
B=39916800
Vậy A<B
b, A<B
so sánh các số tự nhiên a và b biết rằng:
\(\frac{1+2+3+...+a}{a}< \frac{1+2+3+...+b}{b}\)
Co: \(\frac{1+2+3+...+a}{a}\)=\(\frac{1}{a}+\frac{2}{a}+\frac{3}{a}+...+\frac{a}{a}\)
\(\frac{1+2+3+...+b}{b}\)=\(a>b=>\frac{1}{a}< \frac{1}{b},\frac{2}{a}< \frac{2}{b},...\)
=>\(\frac{1+2+3+...+a}{a}< \frac{1+2+3+...+b}{b}\)
So sánh các số tự nhiên a và b, biết rằng:
1+2+3+...+a/a < 1+2+3+...+b/b
Tìm các số tự nhiên \(a,b\) biết: \(\dfrac{1719}{3976}=\dfrac{1}{2+\dfrac{1}{3+\dfrac{1}{5+\dfrac{1}{a+\dfrac{1}{b}}}}}\)
Lời giải:
\(\frac{1719}{3976}=\frac{1}{2+\frac{538}{1719}}=\frac{1}{2+\frac{1}{3+\frac{105}{538}}}=\frac{1}{2+\frac{1}{3+\frac{1}{5+\frac{13}{105}}}}=\frac{1}{2+\frac{1}{3+\frac{1}{5+\frac{1}{8+\frac{1}{13}}}}}\)
$\Rightarrow a=8; b=13$
\(\dfrac{1719}{3976}=\dfrac{1}{\dfrac{3976}{1719}}=\dfrac{1}{2+\dfrac{538}{1719}}=\dfrac{1}{2+\dfrac{1}{\dfrac{1719}{538}}}=\dfrac{1}{2+\dfrac{1}{3+\dfrac{105}{538}}}\)
\(=\dfrac{1}{2+\dfrac{1}{3+\dfrac{1}{\dfrac{538}{105}}}}=\dfrac{1}{2+\dfrac{1}{3+\dfrac{1}{5+\dfrac{13}{105}}}}=\dfrac{1}{2+\dfrac{1}{3+\dfrac{1}{5+\dfrac{1}{\dfrac{105}{13}}}}}\)
\(=\dfrac{1}{2+\dfrac{1}{3+\dfrac{1}{5+\dfrac{1}{8+\dfrac{1}{13}}}}}\)
So sánh các số tự nhiên a và b, biết rằng:
1+2+3+...+a/a < 1+2+3+...+b/b
1.Tìm các số tự nhiên a,b khác 0 sao cho :
\(\dfrac{a}{5}-\dfrac{z}{b}=\dfrac{2}{15}\).
2.Tìm số tự nhiên n, để các biểu thức là số tự nhiên.
a)A=\(\dfrac{4}{n-1}+\dfrac{6}{n-1}-\dfrac{3}{n-1}\).
b)B=\(\dfrac{2n+9}{n+2}-\dfrac{3n}{n+2}+\dfrac{5n+1}{n+2}\).
giúp mình với mai mình nộp rồi
Bài 2:
a) Ta có: \(A=\dfrac{4}{n-1}+\dfrac{6}{n-1}-\dfrac{3}{n-1}\)
\(=\dfrac{4+6-3}{n-1}\)
\(=\dfrac{7}{n-1}\)
Để A là số tự nhiên thì \(7⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(7\right)\)
\(\Leftrightarrow n-1\in\left\{1;7\right\}\)
hay \(n\in\left\{2;8\right\}\)
Vậy: \(n\in\left\{2;8\right\}\)
ta có B=2n+9/n+2-3n+5n+1/n+2=4n+10/n+2 Để B là STN thì 4n+10⋮n+2 4n+8+2⋮n+2 4n+8⋮n+2 ⇒2⋮n+2 n+2∈Ư(2) Ư(2)={1;2} Vậy n=0
So sánh a và b biết :
\(\dfrac{-1}{2}\)\(-\)\(\dfrac{3-2a}{3}\)>\(\dfrac{-1}{2}\)\(-\dfrac{3-2a}{3}\)
Cái này đâu có b đâu bạn
So sánh các số tự nhiên a va b biết rằng:
\(\frac{1+2+3+...+a}{a}
Ta có :
\(\frac{1+2+3+...+a}{a}<\frac{1+2+3+...+b}{b}\)
\(\Leftrightarrow\frac{a\left(a+1\right)}{a}<\frac{b\left(b+1\right)}{b}\)
<=> a + 1 < b + 1
<=> a < b
có 1+2+3+...+a/a<1+2+3+...+b/b
=>(a+1)(a-1+1):2/a<(b+1)(b-1+1):2/b
<=>(a+1)a:2/a<(b+1)b;2/b
<=>a+1<b+1
<=>a<b
vậy a<b