Cái này đâu có b đâu bạn
Cái này đâu có b đâu bạn
Bài 1: Cho a, b, c > 0. Chứng minh:
\(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\ge a+b+c\)
Bài 2:
a) Tìm GTLN của A = \(\dfrac{x^2}{x^4+x^2+1}\)
b) Tìm GTLN của B = xy biết 4x + 5y = 40
Bài 3: Cho a, b, c > 0. Chứng minh:
\(\dfrac{-a+b+c}{2a}+\dfrac{a-b+c}{2b}+\dfrac{a+b-c}{2c}\ge\dfrac{3}{2}\)
Bài 4: Cho m, n > 0. Chứng minh:
\(\dfrac{a^2}{m}+\dfrac{b^2}{n}\ge\dfrac{\left(a+b\right)^2}{m+n}\)
BÀI 1 : RÚT GỌN CÁC BIỂU THỨC SAU .
a, \(\dfrac{3}{x-3}-\dfrac{6x}{9-x^2}+\dfrac{x}{x+3}\)
b, \(\left(\dfrac{3x}{1-3x}+\dfrac{2x}{3x+1}\right):\dfrac{6x^2+10x}{9x^2-6x+1}\)
c, \(\left(\dfrac{9}{x^3-9x}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x^2+3x}-\dfrac{x}{3x+9}\right)\)
d, \(\dfrac{1-x^2}{x}\left(\dfrac{x^2}{x+3}-1\right)+\dfrac{3x^2-14x+3}{x^2+3x}\)
cho a, b > 1. CMR \(\dfrac{a}{2a-1}+\dfrac{b}{2b-1}\ge\dfrac{4}{1+ab}\)
1.cho a,b,c>0,abc=1
tìm Max P= \(\dfrac{1}{2a+3b+c+6}+\dfrac{1}{2b+3c+a+6}+\dfrac{1}{2c+3a+b+6}\)
2.Tìm số tự nhiên n để
a. A= n^3-n^2+n-1 là số nguyên tố
b.n^5-n+2 là số chính phương
BÀI 1 : RÚT GỌN CÁC BIỂU THỨC SAU .
a, \(\dfrac{3}{x-3}-\dfrac{6x}{9-x^2}+\dfrac{x}{x+3}\)
b, \(\left(\dfrac{3x}{1-3x}+\dfrac{2x}{3x+1}\right):\dfrac{6x^2+10x}{9x^2-6x+1}\)
c, \(\left(\dfrac{9}{x^3-9x}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x^2+3x}-\dfrac{x}{3x+9}\right)\)
d, \(\dfrac{1-x^2}{x}\left(\dfrac{x^2}{x+3}-1\right)+\dfrac{3x^2-14x+3}{x^2+3x}\)
Giải các bất phương trình :
a) \(\dfrac{5x^2-3x}{5}+\dfrac{3x+1}{4}< \dfrac{x\left(2x+1\right)}{2}-\dfrac{3}{2}\)
b) \(\dfrac{5x-20}{3}-\dfrac{2x^2+x}{2}>\dfrac{x\left(1-3x\right)}{3}-\dfrac{5x}{4}\)
1. Giải các BPT
a) \(\dfrac{5x^2-3x}{5}+\dfrac{3x+1}{4}< \dfrac{x\left(2x+1\right)}{2}-\dfrac{3}{2}\)
b)\(\dfrac{5x-20}{3}-\dfrac{2x^2+x}{2}\ge\dfrac{x\left(1-3x\right)}{3}-\dfrac{5x}{4}\)
c) (x+3)2\(\le\)x2-7
cho a,b,c >0 thỏa mãn a.b.c=1. chứng minh rằng \(\dfrac{1}{a^3.\left(b+c\right)}+\dfrac{1}{b^3\left(a+c\right)}+\dfrac{1}{c^3.\left(a+b\right)}>=\dfrac{3}{2}\)
cho a;b;c thoă mãn là 3 số dương và abc=1
CMR:\(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)