Những câu hỏi liên quan
H24
Xem chi tiết
NL
9 tháng 3 2020 lúc 15:01

Phương trình hoành độ giao điểm:

\(\left(m-1\right)x-m^2-2m=\left(m-2\right)x-m^2-m+1\)

\(\Leftrightarrow x=m+1\)

\(\Rightarrow y=\left(m-1\right)\left(m+1\right)-m^2-2m=-2m-1\)

\(\Rightarrow Q\left(m+1;-2m-1\right)\)

\(2x_Q+y_Q=2m+2-2m-1=1\) \(\forall m\)

\(\Leftrightarrow y_Q=-2x_Q+1\) \(\forall m\)

\(\Rightarrow Q\) luôn thuộc đường thẳng cố định \(y=-2x+1\)

Bình luận (0)
 Khách vãng lai đã xóa
GB
Xem chi tiết
HT
24 tháng 5 2023 lúc 22:26

xfgb

Bình luận (0)
NH
Xem chi tiết
TD
Xem chi tiết
LP
8 tháng 5 2022 lúc 8:20

Phương trình hoành độ giao điểm của (P) và (d) là \(x^2=2x-m\Leftrightarrow x^2-2x+m=0\) (*)

Pt (*) có \(\Delta'=\left(-1\right)^2-1.m=1-m\)

Để (d) cắt (P) tại 2 điểm phân biệt \(x_1,x_2\) thì pt (*) phải có 2 nghiệm phân biệt \(x_1,x_2\) \(\Leftrightarrow\Delta'>0\Leftrightarrow1-m>0\Leftrightarrow m< 1\)

Khi \(m< 1\), áp dụng hệ thức Vi-ét, ta có \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m\end{matrix}\right.\)

Mà \(\left\{{}\begin{matrix}y_1=x_1^2\\y_2=x_2^2\end{matrix}\right.\)\(\Rightarrow y_1+y_2=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=2^2-2m=4-2m\)

Do đó để \(y_1+y_2+x_1^2x_2^2=6\left(x_1+x_2\right)\)\(\Leftrightarrow4-2m+m^2=6.2\)\(\Leftrightarrow m^2-2m-8=0\) (1)

pt (1) có \(\Delta'=\left(-1\right)^2-1.\left(-8\right)=9>0\)

Vậy (1) có 2 nghiệm phân biệt \(\left[{}\begin{matrix}m_1=\dfrac{-\left(-1\right)+\sqrt{9}}{1}=4\\m_2=\dfrac{-\left(-1\right)-\sqrt{9}}{1}=-2\end{matrix}\right.\)

Như vậy để (d) cắt (P) tại 2 điểm có hoành độ và tung độ thỏa mãn yêu cầu đề bài thì \(\left[{}\begin{matrix}m=4\\m=-2\end{matrix}\right.\)

Bình luận (0)
LP
8 tháng 5 2022 lúc 8:21

Mà do \(m< 1\) nên ta chỉ nhận trường hợp \(m=-2\)

Vậy để (d) cắt (P) tại 2 điểm phân biệt có hoành độ và tung độ thỏa mãn đề bài thì \(m=-2\)

Bình luận (0)
NN
1 tháng 6 2022 lúc 23:44

Phương trình hoành độ giao điểm của (d) và (P) là:

x2=2x−m⇔x2−2x+m=0 (1)

Ta có: Δ′=1−m.

Điều kiện để (d) cắt (P) tại hai điểm phân biệt là phương trình hoành độ giao điểm của (d) và (P) có hai nghiệm phân biệt.

Suy ra 1−m>0⇔m<1 (*).

Khi đó x1x2 là các hoành độ giao điểm của (d) và (P) nên x1x2 là các nghiệm của phương trình hoành độ của (d) và (P).

Theo hệ thức Vi-et ta có: 

Bình luận (0)
NB
Xem chi tiết
NT
29 tháng 10 2023 lúc 20:11

Tọa độ giao điểm của (d2) và (d3) là nghiệm của hệ phương trình sau:

\(\left\{{}\begin{matrix}x+1=-x+3\\y=x+1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x=2\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Thay x=1 và y=2 vào (d1), ta được:

\(\left(m^2-1\right)+m^2-5=2\)

=>\(2m^2=8\)

=>\(m^2=4\)

=>\(\left[{}\begin{matrix}m=2\\m=-2\end{matrix}\right.\)

Bình luận (0)
BB
Xem chi tiết
KH
Xem chi tiết
NL
12 tháng 1 2021 lúc 17:59

M thuộc d, quỹ tích những điểm N thỏa mãn \(2\overrightarrow{OM}+\overrightarrow{ON}=\overrightarrow{0}\) là ảnh của d qua phép vị tự tâm O tỉ số \(k=-2\)

\(\Rightarrow\) Quỹ tích N là đường thẳng d' có pt \(x+y-6=0\)

d' không cắt (C)  nên không tồn tại cặp điểm M, N nào thỏa mãn yêu cầu

Bình luận (0)
HH
Xem chi tiết
NT
28 tháng 8 2023 lúc 20:02

loading...  

Bình luận (0)
BB
Xem chi tiết
NT
19 tháng 3 2022 lúc 23:02

(d) // (d') : y = -x + 3 

\(\left\{{}\begin{matrix}m+3=-1\\n-2\ne3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-4\\n\ne5\end{matrix}\right.\)

<=> (d) : \(y=-x+n-2\)

Thay x = -2 vào (d'') : y = 3x + 4 

<=> y = -6 + 4 = -2 

Vậy (d) cắt (d'') tại A(-2;-2) 

<=> -2 = 2 + n - 2 <=> n = -2 (tmđk) 

Vậy (d) : y = -x -4 

 

Bình luận (0)
NK
Xem chi tiết