Những câu hỏi liên quan
DT
Xem chi tiết
NT
17 tháng 4 2021 lúc 21:34

Ta có: \(\dfrac{x^2+xy}{x^2+xy+y^2}-\left(\dfrac{x\left(2x^2+xy-y^2\right)}{x^3-y^3}-2+\dfrac{y}{y-x}\right):\dfrac{x-y}{x}-\dfrac{x}{x-y}\)

\(=\dfrac{x^2+xy}{x^2+xy+y^2}-\left(\dfrac{x\left(2x^2+xy-y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{2\left(x^3-y^3\right)-y\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\right):\dfrac{x-y}{x}-\dfrac{x}{x-y}\)

\(=\dfrac{x^2+xy}{x^2+xy+y^2}-\dfrac{2x^3+x^2y-xy^2-2x^3+2y^3-x^2y-xy^2-y^3}{\left(x-y\right)\left(x^2+xy+y^2\right)}:\dfrac{x-y}{x}-\dfrac{x}{x-y}\)

\(=\dfrac{x\left(x+y\right)}{x^2+xy+y^2}-\dfrac{y^3-2xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}:\dfrac{x-y}{x}-\dfrac{x}{x-y}\)

\(=\dfrac{x\left(x+y\right)}{x^2+xy+y^2}+\dfrac{y^2\left(x-y\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\cdot\dfrac{x}{x-y}-\dfrac{x}{x-y}\)

\(=\dfrac{x\left(x+y\right)}{x^2+xy+y^2}+\dfrac{xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{x}{x-y}\)

\(=\dfrac{x\left(x^2-y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\dfrac{xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{x\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{x^3-xy^2+xy^2-x^3-x^2y-xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{-x^2y-xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

Bình luận (0)
DH
Xem chi tiết
HT
31 tháng 5 2017 lúc 15:34

\(=\frac{x^2+xy+y^2}{x+y}.\left(\frac{1}{\left(x-y\right)x}-\frac{3y^2}{x\left(x^3-y^3\right)}-\frac{y}{x\left(x^2+xy+y^2\right)}\right)\)

\(=\frac{x^2+xy+y^2}{x+y}.\frac{x^2+xy+y^2-3y^2-xy+y^2}{x\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\frac{x^2-y^2}{x\left(x-y\right)\left(x+y\right)}=\frac{\left(x-y\right)\left(x+y\right)}{x\left(x-y\right)\left(x+y\right)}=\frac{1}{x}\)

Bình luận (0)
VA
Xem chi tiết
DN
Xem chi tiết
NT
20 tháng 5 2022 lúc 19:54

\(=\dfrac{2}{x}-\left(\dfrac{x^2}{x\left(x+y\right)}-\dfrac{x^2-y^2}{xy}-\dfrac{y^2}{y\left(x+y\right)}\right):\dfrac{x^3-y^3}{x^2-y^2}\)

\(=\dfrac{2}{x}-\left(\dfrac{x^2y-\left(x^2-y^2\right)\left(x+y\right)-y^2x}{xy\left(x+y\right)}\right)\cdot\dfrac{x+y}{x^2+xy+y^2}\)

\(=\dfrac{2}{x}-\dfrac{x^2y-x^3-x^2y+xy^2+y^3-xy^2}{xy}\cdot\dfrac{1}{x^2+xy+y^2}\)

\(=\dfrac{2}{x}-\dfrac{-\left(x-y\right)\left(x^2+xy+y^2\right)}{xy}\cdot\dfrac{1}{x^2+xy+y^2}\)

\(=\dfrac{2}{x}+\dfrac{x-y}{xy}=\dfrac{y+x-y}{xy}=\dfrac{1}{y}\)

Bình luận (0)
CD
Xem chi tiết
CD
Xem chi tiết
H24
14 tháng 12 2018 lúc 12:37

\(a,\frac{x}{xy-y^2}+\frac{2x-y}{xy-x^2}:\left(\frac{1}{x}+\frac{1}{y}\right)\)

\(=\left(\frac{x}{y\left(x-y\right)}+\frac{y-2x}{x\left(x-y\right)}\right):\left(\frac{y}{xy}+\frac{x}{xy}\right)\)

\(=\left(\frac{x-y}{x\left(x-y\right)}\right):\left(\frac{x+y}{xy}\right)\)

\(=\frac{1}{x}.\frac{xy}{x+y}=\frac{y}{x+y}\)

Bình luận (0)
NT
Xem chi tiết
DT
Xem chi tiết