Những câu hỏi liên quan
TN
Xem chi tiết
NL
23 tháng 11 2019 lúc 23:58

Giả sử các biểu thức đều xác định

a/ \(\frac{1-sina}{cosa}=\frac{cosa\left(1-sina\right)}{cos^2a}=\frac{cosa\left(1-sina\right)}{1-sin^2a}=\frac{cosa\left(1-sina\right)}{\left(1-sina\right)\left(1+sina\right)}=\frac{cosa}{1+sina}\)

b/ \(=\frac{sin^2a+\left(1+cosa\right)^2}{sina\left(1+cosa\right)}=\frac{sin^2a+cos^2a+2cosa+1}{sina\left(1+cosa\right)}=\frac{2\left(cosa+1\right)}{sina\left(1+cosa\right)}=\frac{2}{sina}\)

c/ \(=\frac{cosa\left(1-sina\right)+cosa\left(1+sina\right)}{\left(1-sina\right)\left(1+sina\right)}=\frac{2cosa}{1-sin^2a}=\frac{2cosa}{cos^2a}=\frac{2}{cosa}\)

Bình luận (0)
 Khách vãng lai đã xóa
TN
23 tháng 11 2019 lúc 23:46

Chứng minh các hằng đẳng thức trên

Bình luận (0)
 Khách vãng lai đã xóa
MN
Xem chi tiết
MN
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
NH
16 tháng 8 2019 lúc 21:04

b) khai triển hằng đẳng thức là ra

a) nhân tích chéo

Bình luận (0)
BH
16 tháng 8 2019 lúc 21:59

\(\frac{\cos\alpha}{1-\sin\alpha}=\frac{1+\sin\alpha}{\cos\alpha}\Leftrightarrow\cos^2\alpha=1-\sin^2\alpha\)\(\Leftrightarrow\cos^2\alpha+\sin^2\alpha=1\)(luôn đúng)

\(\frac{\left(\sin\alpha+\cos\alpha\right)^2-\left(\sin\alpha-\cos\alpha\right)^2}{\sin\alpha\cdot\cos\alpha}=\frac{\sin^2\alpha+\cos^2\alpha+2\sin\alpha\cdot\cos\alpha-\sin^2\alpha-\cos^2\alpha+2\sin\alpha\cdot\cos\alpha}{\sin\alpha\cdot\cos\alpha}\)

\(=\frac{4\sin\alpha\cdot\cos\alpha}{\sin\alpha\cdot\cos\alpha}=4\)(đpcm)

Bình luận (0)
NP
Xem chi tiết
SS
Xem chi tiết
SS
19 tháng 8 2017 lúc 18:49

4

Bình luận (0)
TO
Xem chi tiết
NT
9 tháng 7 2022 lúc 23:12

a: \(\sin^2a+\cos^2a=1\)

\(\Leftrightarrow\cos^2a=1-\sin^2a=\left(1-\sin a\right)\left(1+\sin a\right)\)

hay \(\dfrac{\cos a}{1-\sin a}=\dfrac{1+\sin a}{\cos a}\)

b: \(VT=\dfrac{\left(\sin a+\cos a+\sin a-\cos a\right)\left(\sin a+\cos a-\sin a+\cos a\right)}{\sin a\cdot\cos a}\)

\(=\dfrac{2\cdot\cos a\cdot2\sin a}{\sin a\cdot\cos a}=4\)

Bình luận (0)
MN
Xem chi tiết
NL
1 tháng 4 2021 lúc 17:10

\(\dfrac{sina}{sina-cosa}-\dfrac{cosa}{cosa-sina}=\dfrac{sina+cosa}{sina-cosa}=\dfrac{1+cota}{1-cota}=\dfrac{\left(1+cota\right)^2}{1-cot^2a}\)

Đề bài ko đúng

Bình luận (0)