Những câu hỏi liên quan
HK
Xem chi tiết
NH
8 tháng 4 2023 lúc 18:52

A = \(\dfrac{2x-1}{x+2}\) 

a, A là phân số ⇔ \(x\) + 2  # 0  ⇒ \(x\) # -2

b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2 

                                          ⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2

                                         ⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2

                                         ⇒ 5 ⋮ \(x\) + 2

                            ⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}

                            ⇒  \(x\)   \(\in\) { -7; -3; -1; 3}

c, A = \(\dfrac{2x-1}{x+2}\) 

  A = 2 - \(\dfrac{5}{x+2}\)

Với \(x\) \(\in\) Z và \(x\) < -3 ta có

                     \(x\) + 2 < - 3 + 2 = -1

              ⇒  \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\)  = -5  ⇒ - \(\dfrac{5}{x+2}\)<  5

              ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)

Với \(x\)  > -3;  \(x\) # - 2; \(x\in\)  Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1

            \(\dfrac{5}{x+2}\) > 0  ⇒  - \(\dfrac{5}{x+2}\)  < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)

Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)

Kết hợp (1); (2) và(3)  ta có A(max) = 7 ⇔ \(x\) = -3

 

                     

             

                                   

     

 

            

Bình luận (0)
MN
Xem chi tiết
TN
19 tháng 5 2021 lúc 10:22

a) Ta có: \(M=\dfrac{8x+1}{4x-5}=\dfrac{8x-10+11}{4x-5}=\dfrac{2\left(x-5\right)+11}{4x-5}=2+\dfrac{11}{4x-5}\)

Để M nhận giá trị nguyên thì \(2+\dfrac{11}{4x-5}\) nhận giá trị nguyên

\(\Rightarrow\dfrac{11}{4x-5}\) nhận giá trị nguyên

\(\Rightarrow11⋮4x-5\)

Vì \(x\in Z\) nên \(4x-5\in Z\)

\(\Rightarrow4x-5\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

\(\Rightarrow x\in\left\{1;\pm1,5;4\right\}\)

Vậy \(x\in\left\{1;4\right\}\) thỏa mãn \(x\in Z\).

b) Ta có: \(A=\dfrac{5}{4-x}\). ĐK: \(x\ne4\)

Nếu 4 - x < 0 thì x > 4 \(\Rightarrow A>0\)

       4 - x > 0 thì x < 4 \(\Rightarrow A< 0\)

Để A đạt GTLN thì 4 - x là số nguyên dương nhỏ nhất

\(\Rightarrow4-x=1\Rightarrow x=3\)

\(\Rightarrow A=\dfrac{5}{4-3}=5\)

Vậy MaxA = 5 tại x = 3

c) \(B=\dfrac{8-x}{x-3}\). ĐK: \(x\ne3\).

Ta có: \(B=\dfrac{8-x}{x-3}=\dfrac{-\left(x-8\right)}{x-3}=\dfrac{-\left(x-3\right)+5}{x-3}=\dfrac{5}{x-3}-1\)

Để B đạt giá trị nhỏ nhất thì \(\dfrac{5}{x-3}-1\) nhỏ nhất

\(\Rightarrow\dfrac{5}{x-3}\) nhỏ nhất

Nếu x - 3 > 0 thì x > 3 \(\Rightarrow\dfrac{5}{x-3}>0\) 

       x - 3 < 0 thì x < 3 \(\Rightarrow\dfrac{5}{x-3}< 0\)

Để \(\dfrac{5}{x-3}\) nhỏ nhất thì x - 3 là số nguyên âm lớn nhất

\(\Rightarrow x-3=-1\Rightarrow x=2\)

\(\Rightarrow B=\dfrac{8-2}{2-3}=-6\)

Vậy MaxB = -6 tại x = 2.

Bình luận (1)
NT
19 tháng 5 2021 lúc 10:53

a) Để M nhận giá trị nguyên thì \(8x+1⋮4x-1\)

\(\Leftrightarrow8x-2+3⋮4x-1\)

mà \(8x-2⋮4x-1\)

nên \(3⋮4x-1\)

\(\Leftrightarrow4x-1\inƯ\left(3\right)\)

\(\Leftrightarrow4x-1\in\left\{1;-1;3;-3\right\}\)

\(\Leftrightarrow4x\in\left\{2;0;4;-2\right\}\)

\(\Leftrightarrow x\in\left\{\dfrac{1}{2};0;1;-\dfrac{1}{2}\right\}\)

mà x là số nguyên

nên \(x\in\left\{0;1\right\}\)

Vậy: \(x\in\left\{0;1\right\}\)

Bình luận (0)
AN
Xem chi tiết
NT
26 tháng 7 2023 lúc 21:39

\(B=\dfrac{-2x+24+16}{2x-24}=-1+\dfrac{16}{2x-24}=-1+\dfrac{8}{x-12}\)

Để B có giá trị nhỏ nhất thì x-12=-1

=>x=11

Bình luận (0)
VT
Xem chi tiết
LF
1 tháng 1 2017 lúc 5:57

có cho x dương ko để xài Cosi

Bình luận (12)
HN
11 tháng 3 2017 lúc 11:44

Đề không cho gì hết nên ta xét 2 trường hợp.

Trường hợp 1: \(x< 0\) thì ta thấy khi x càng nhỏ thì 2x càng nhỏ hay x càng nhỏ thì B càng nhỏ. Nên trong trường hợp này không tìm được GTNN.

Trường hợp 2: \(x\ge0\) thì ta thấy \(x\ge0\) và càng gần với 3 thì giá trị của của \(\dfrac{8}{x-3}\) càng bé hay B càng bé.

Từ đây có thể thấy với cái đề như vầy thì không tồn tại GTNN

Bình luận (0)
HN
11 tháng 3 2017 lúc 11:45

Đề không cho gì hết nên ta xét 2 trường hợp.

Trường hợp 1: \(x< 0\) thì ta thấy khi x càng nhỏ thì 2x càng nhỏ hay x càng nhỏ thì B càng nhỏ. Nên trong trường hợp này không tìm được GTNN.

Trường hợp 2: \(x\ge0\) thì ta thấy \(3>x\ge0\) và càng gần với 3 thì giá trị của của \(\dfrac{8}{x-3}\) càng bé hay B càng bé.

Từ đây có thể thấy với cái đề như vầy thì không tồn tại GTNN

Bình luận (0)
QT
Xem chi tiết
H24
Xem chi tiết
H24
4 tháng 1 2022 lúc 21:03

Tham khảo:

Tìm giá trị nguyên của x để biểu thức B=(7-x)/(x-5) có giá trị nhỏ nhất - Lê Nhi

Bình luận (5)
NM
4 tháng 1 2022 lúc 21:29

\(A=\dfrac{-x+5+2}{x-5}=-1+\dfrac{2}{x-5}\)

Để A đạt min thì \(\left\{{}\begin{matrix}A\in Z\\x\in Z\end{matrix}\right.\)

\(\Rightarrow x-5\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\\ \Rightarrow x\in\left\{3;4;6;7\right\}\)

Với \(x=3\Rightarrow A=-2\)

Với \(x=4\Rightarrow A=-3\)

Với \(x=6\Rightarrow A=1\)

Với \(x=7\Rightarrow A=0\)

Vậy \(A_{min}=-3\Rightarrow x=4\)

Bình luận (1)
MK
Xem chi tiết
ND
23 tháng 2 2018 lúc 16:38

bt nào vậy bạn

Bình luận (0)
MK
23 tháng 2 2018 lúc 16:39

biểu thức M=2x-5/x

Bình luận (0)
AA
Xem chi tiết
TC
Xem chi tiết
NB
7 tháng 12 2020 lúc 19:21

bạn viết thế này khó nhìn quá

Bình luận (0)
 Khách vãng lai đã xóa
LT
26 tháng 11 2021 lúc 20:17

nhìn hơi đau mắt nhá bạn hoa mắt quá

Bình luận (0)
 Khách vãng lai đã xóa
HC
Xem chi tiết
HN
21 tháng 6 2021 lúc 16:27

 \(C=\left(\dfrac{2x^2+1}{x^3-1}-\dfrac{1}{x-1}\right)\div\left(1-\dfrac{x^2-2}{x^2+x+1}\right)\)

ĐKXĐ: \(x\ne1\)

\(C=[\left(\dfrac{2x^2+1}{(x-1)\left(x^2+x+1\right)}-\dfrac{1}{x-1}\right)]\div\left(1-\dfrac{x^2-2}{x^2+x+1}\right)\)

\(\Leftrightarrow C=[\left(\dfrac{2x^2+1}{(x-1)\left(x^2+x+1\right)}-\dfrac{1\left(x^2+x+1\right)}{(x-1)\left(x^2+x+1\right)}\right)]\div[\dfrac{(x-1)\left(x^2+x+1\right)}{(x-1)\left(x^2+x+1\right)}-\dfrac{(x^2-2)(x-1)}{(x^2+x+1)\left(x-1\right)}]\)

\(\Rightarrow C=\left[2x^2+1-1\left(x^2+x+1\right)\right]\div\left[\left(x-1\right)\left(x^2+x+1\right)-\left(x-1\right)\left(x^2-2\right)\right]\)

\(\Rightarrow C=(2x^2+1-x^2-x-1)\div\left[\left(x-1\right)\left(x^2+x+1-x^2+2\right)\right]\)

\(\Rightarrow C=\left(x^2-x\right)\div\left[\left(x-1\right)\left(x+3\right)\right]\)

 

 

 

Bình luận (0)