Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
TD
Xem chi tiết
NA
Xem chi tiết
HT
17 tháng 12 2016 lúc 17:49

1) ĐK: \(\frac{x+1}{x}>0\Leftrightarrow\left[\begin{array}{nghiempt}x>0\\x< -1\end{array}\right.\)

Đặt \(t=\sqrt{\frac{x+1}{x}}\left(t>0\right)\) , bất pt đã cho trở thành:

\(\frac{1}{t^2}-2t>3\Leftrightarrow\frac{1-2t^3-3t^2}{t^2}>0\Leftrightarrow1-2t^3-3t^2>0\)

\(\Leftrightarrow\left(t+1\right)^2\left(1-2t\right)>0\Leftrightarrow1-2t>0\Leftrightarrow t< \frac{1}{2}\)

\(t< \frac{1}{2}\Rightarrow\sqrt{\frac{x+1}{x}}< \frac{1}{2}\Leftrightarrow\frac{x+1}{x}< \frac{1}{4}\Leftrightarrow\frac{3x+4}{4x}< 0\)

Lập bảng xét dấu ta được \(-\frac{4}{3}< x< 0\)

Kết hợp điều kiện ta được: \(-\frac{4}{3}< x< -1\) là giá trị cần tìm

 

 

Bình luận (0)
HT
17 tháng 12 2016 lúc 18:16

3) Chứng minh BĐT phụ: \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\left(a,b>0\right)\)(1)

\(\left(1\right)\Leftrightarrow\frac{1}{a+b}\le\frac{a+b}{4ab}\Leftrightarrow4ab\le\left(a+b\right)^2\Leftrightarrow\left(a-b\right)^2\ge0\)

Dấu '=' xảy ra ↔ a = b

Áp dụng BĐT trên, ta có:

\(\frac{x}{x+1}=\frac{x}{x+x+y+z}=\frac{x}{x+y+x+z}\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)

Tương tự:

\(\frac{y}{y+1}\le\frac{1}{4}\left(\frac{y}{y+x}+\frac{y}{y+z}\right)\)

\(\frac{z}{z+1}\le\frac{1}{4}\left(\frac{z}{z+x}+\frac{z}{z+y}\right)\)

Cộng vế theo vế ba BĐT trên ta được:

\(P\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{y}{x+y}+\frac{x}{x+z}+\frac{z}{z+x}+\frac{z}{z+y}+\frac{y}{y+z}\right)\)

\(\Leftrightarrow P\le\frac{1}{4}\left(1+1+1\right)=\frac{3}{4}\)

Dấu '=' xảy ra khi x = y = z = 1/3 (do x + y + z = 1)

Vậy GTLN của P là 3/4 khi x = y = z = 1/3

Bình luận (0)
LF
17 tháng 12 2016 lúc 18:28

Bài 2:

Ta có:

\(a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\ge\left(a+b\right)\left(2ab-ab\right)=\left(a+b\right)ab\)

\(\Leftrightarrow a^3+b^3+abc\ge\left(a+b\right)ab+abc=\left(a+b+c\right)ab\)

\(\Leftrightarrow\frac{1}{a^3+b^3+abc}\le\frac{1}{\left(a+b+c\right)ab}\left(1\right)\). Tương tự ta có:

\(\frac{1}{b^3+c^3+abc}\le\frac{1}{\left(a+b+c\right)bc}\left(2\right);\frac{1}{a^3+c^3+abc}\le\frac{1}{\left(a+b+c\right)ac}\left(3\right)\)

Cộng theo vế của (1),(2),(3) ta có:

\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\)\(\le\frac{1}{a+b+c}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)

\(=\frac{1}{a+b+c}\cdot\frac{a+b+c}{abc}=\frac{1}{abc}\)

Đẳng thức xảy ra khi \(a=b=c\)

 

Bình luận (1)
TD
Xem chi tiết
H24
Xem chi tiết
NT
15 tháng 8 2023 lúc 22:22

a: \(A=\dfrac{x^{\dfrac{1}{3}}\cdot y^{\dfrac{1}{2}}+y^{\dfrac{1}{3}}\cdot x^{\dfrac{1}{2}}}{x^{\dfrac{1}{6}}+y^{\dfrac{1}{6}}}=\dfrac{x^{\dfrac{1}{3}}\cdot y^{\dfrac{1}{3}}\left(x^{\dfrac{1}{6}}+y^{\dfrac{1}{6}}\right)}{x^{\dfrac{1}{6}}+y^{\dfrac{1}{6}}}=x^{\dfrac{1}{3}}\cdot y^{\dfrac{1}{3}}=\left(xy\right)^{\dfrac{1}{3}}\)

b: \(B=\dfrac{x^{3+\sqrt{3}}}{y^2}\cdot\dfrac{x^{-\sqrt{3}-1}}{y^{-2}}=\dfrac{x^{3+\sqrt{3}-\sqrt{3}-1}}{y^{2-2}}=x^2\)

Bình luận (0)
MN
Xem chi tiết
AN
23 tháng 3 2017 lúc 16:02

Ta có:

\(A=\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^4}-\frac{1}{y^4}\right)=\frac{1}{\left(x+y\right)^3}.\frac{\left(y^2+x^2\right)\left(x+y\right)\left(y-x\right)}{x^4y^4}=\frac{\left(x^2+y^2\right)\left(y-x\right)}{\left(x+y\right)^2x^4y^4}\)

\(B=\frac{1}{\left(x+y\right)^4}.\left(\frac{1}{x^3}-\frac{1}{y^3}\right)=\frac{\left(y-x\right)\left(y^2+xy+x^2\right)}{\left(x+y\right)^4x^3y^3}\)

\(C=\frac{1}{\left(x+y\right)^5}\left(\frac{1}{x^2}-\frac{1}{y^2}\right)=\frac{y-x}{\left(x+y\right)^4x^2y^2}\)

\(\Rightarrow A+B+C=\frac{\left(x^2+y^2\right)\left(y-x\right)}{\left(x+y\right)^2x^4y^4}+\frac{\left(y-x\right)\left(x^2+xy+y^2\right)}{\left(x+y\right)^4x^3y^3}+\frac{\left(y-x\right)}{\left(x+y\right)^4x^2y^2}\)

\(=\frac{y^3-x^3}{x^4y^4\left(x+y\right)^2}\)

b/ Thế vô rồi tính nhé

Bình luận (0)
H24
23 tháng 3 2017 lúc 19:25

Đoạn gần cuối thay y-x= 1 luôn 

\(A+B+C=\frac{x^2+y^2}{\left(x+y\right)^2x^4y^4}+\left(\frac{\left(x+y\right)^2}{\left(x+y\right)^4\left(xy\right)^3}\right)\\ \)

\(A+B+C=\frac{x^2+y^2}{\left(x+y\right)^2\left(xy\right)^4}+\frac{1}{\left(x+y\right)^2\left(xy\right)^3}\)

\(A+B+C=\frac{x^2+y^2+xy}{\left[\left(x+y\right)xy\right]^2\left(xy\right)^2}\)  giờ mới thay không biết đã tối giản chưa

Bình luận (0)
TQ
Xem chi tiết
TN
10 tháng 8 2017 lúc 22:47

post từng câu một thôi bn nhìn mệt quá

Bình luận (0)
DA
Xem chi tiết
LS
Xem chi tiết
NL
8 tháng 9 2020 lúc 21:52

\(\frac{x^3}{y+1}+\frac{y+1}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{x^3\left(y+1\right)}{8\left(y+1\right)}}=\frac{3}{2}x\)

Tương tự: \(\frac{y^3}{x+1}+\frac{x+1}{4}+\frac{1}{2}\ge\frac{3}{2}y\)

Cộng vế với vế:

\(B+\frac{x+y+2}{4}+1\ge\frac{3}{2}\left(x+y\right)\)

\(\Rightarrow B\ge\frac{5}{4}\left(x+y\right)-\frac{3}{2}\ge\frac{5}{4}.2\sqrt{xy}-\frac{3}{2}=1\)

Dấu "=" xảy ra khi \(x=y=1\)

Bình luận (0)
H24
Xem chi tiết
TV
Xem chi tiết