\(n\left(n+1\right)\le110\) có mấy giá trị n thỏa mãn bất phương trình
Tập hợp các số tự nhiên n thỏa mãn bất phương trình \(\left(n+1\right)^2-\left(n-5\right)\left(n+5\right)\le30\)là {...}
(Nhập các phần tử theo giá trị tăng dần, cách nhau bởi dấu ";").
Cre: Violympic Toán 8 Vòng 16
a) Cho hai số thực a và b thỏa a-b=2. Tích a và b đạt Min bằng bao nhiêu
b) Có bao nhiêu giá trị nguyên của x thuộc [-2;5] thỏa mãn phương trình x2(x-1) \(\ge0\)
c) Bất pt \(\left|4x+3\right|-\left|x-1\right|< x\) có tập nghiệm S=(a;b). Tính giá trị biểu thức P=2a-4b
d) Có bao nhiêu giá trị nguyên của tham số m để bất phương trình \(x^2-2mx+2\left|x-m\right|+2>0\)
Bài 1:
a) Tìm các số tự nhiên n thỏa mãn bất phương trình:
(n + 2)2 - (x - 3) (n + 3) \(\le\)40
b) Tìm các số tự nhiên n thỏa mãn đồng thời cả hai bất phương trình sau:
4 (n + 1) + 3n - 6 < 19 và (n - 3)2 - (n + 4) (n - 4) \(\le43\)
Bài 2:
Chứng minh bất đẳng thức sau
\(A=\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\) \(B=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge6;\left(a,b,c>0\right)\)
Bài 2:
A = (a+b)(1/a+1/b)
Có: \(a+b\ge2\sqrt{ab}\)
\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\)
=> \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge2\sqrt{ab}.2\sqrt{\frac{1}{ab}}=4\)
=> ĐPCM
1.b)
Pt (1) : 4(n + 1) + 3n - 6 < 19
<=> 4n + 4 + 3n - 6 < 19
<=> 7n - 2 < 19
<=> 7n - 2 - 19 < 0
<=> 7n - 21 < 0
<=> n < 3
Pt (2) : (n - 3)^2 - (n + 4)(n - 4) ≤ 43
<=> n^2 - 6n + 9 - n^2 + 16 ≤ 43
<=> -6n + 25 ≤ 43
<=> -6n ≤ 18
<=> n ≥ -3
Vì n < 3 và n ≥ -3 => -3 ≤ n ≤ 3.
Vậy S = {x ∈ R ; -3 ≤ n ≤ 3}
Tồn tại duy nhất một giá trị m để bất phương trình \(x^2\le2mx-m^2+m-3\) có tập nghiệm \(S=\left[x_1;x_2\right]\) thỏa mãn điều kiện \(\sqrt{x^2_1+2mx_2+m^2-m+3}=\left|m-9\right|\). Tìm m
BPT \(x^2-2mx+m^2-m+3\le0\) có tập nghiệm S đã cho nên \(x_1;x_2\) là nghiệm:
\(x^2-2mx+m^2-m+3=0\) với \(\Delta=m^2-\left(m^2-m+3\right)=m-3\ge0\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-m+3\end{matrix}\right.\)
Mặt khác, do \(x_1\) là nghiệm nên: \(x_1^2=2mx_1-m^2+m-3\)
Thay vào bài toán:
\(\sqrt{2mx_1-m^2+m-3+2mx_2+m^2-m+3}=\left|m-9\right|\)
\(\Leftrightarrow\sqrt{2m\left(x_1+x_2\right)}=\left|m-9\right|\)
\(\Leftrightarrow\sqrt{4m^2}=\left|m-9\right|\)
\(\Leftrightarrow4m^2=m^2-18m+81\Rightarrow\left[{}\begin{matrix}m=3\\m=-9\left(loại\right)\end{matrix}\right.\)
1/Tìm các số nguyên âm thỏa mãn : (n-2)-(n-3)(n+3)>=-13
2/Giải bất phương trình :(x2 + x+ 3 / x2 - x - 6 ) <0 (* Dấu / là trên đó nghe mấy bạn : X2 +x+3... trên x2-x-6 nha )
3/giải phương trình có giá trị tđ : l x-1 l + l2-xl =3
Mọi người giúp với mai em nộp rồi :) <3
Tìm các số tự nhiên \(n\) thỏa mãn mỗi bất phương trình sau :
a) \(3\left(5-4n\right)+\left(27+2n\right)>0\)
b) \(\left(n+2\right)^2-\left(n-3\right)\left(n+3\right)\le40\)
a) \(3\left(5-4n\right)+\left(27+2n\right)>0\)
\(\Leftrightarrow15-12n+27+2n>0\)
\(\Leftrightarrow42-10n>0\)
\(\Leftrightarrow-10n>-42\Leftrightarrow n< 4,2\)
Vậy \(S=\left\{n|n< 4,2\right\}\)
b) \(\left(n+2\right)^2-\left(n-3\right)\left(n+3\right)\le40\)
\(\Leftrightarrow n^2+4n+4-n^2+9\le40\)
\(\Leftrightarrow4n+13\le40\)
\(\Leftrightarrow4n\le27\Leftrightarrow n\le6,75\)
Vậy \(S=\left\{n|n\le6,75\right\}\)
Cho phương trình: x²-2(n+1)x+n²+2=0
xác định các giá trị của n để phương trình có hai nghiệm phân biệt x1;x2 thỏa mãn điều kiện: x1³+x2³=1
Δ=(2n+2)^2-4(n^2+2)
=4n^2+8n+4-4n^2-8
=8n-4
Để phương trình có hai nghiệm phân biệt thì 8n-4>0
=>n>1/2
x1^3+x2^3=1
=>(x1+x2)^3-3x1x2(x1+x2)=1
=>(2n+2)^3-3(n^2+2)(2n+2)=1
=>8n^3+24n^2+24n+8-3(2n^3+2n^2+4n+4)=1
=>8n^3+24n^2+24n+8-6n^3-6n^2-12n-12-1=0
=>2n^3+18n^2+12n-5=0
=>\(n\in\varnothing\)
Tập hợp các giá trị x thỏa mãn
\(3x^n\left(4x^{n-1}-1\right)-2x^{n+1}\left(6x^{n-2}-1\right)\)
Tìm tất cả các giá trị của m để phương trình \(x^2-\left(m-1\right)x+\left(m+3\right)=0\) có 2 nghiệm phân biệt x1, x2 thỏa mãn \(x_1^2+x_2^2\) đạt giá trị nhỏ nhất.
\(\Delta=\left(m-1\right)^2-4\left(m+3\right)=m^2-6m-11>0\) (1)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=m+3\end{matrix}\right.\)
Ta có:
\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=\left(m-1\right)^2-2\left(m+3\right)=m^2-4m-5\)
Biểu thức này ko tồn tại cả min lẫn max với điều kiện m từ (1)