rút gọn
1+3^2+3^3+3^4+3^5.+.....+3^20
rút gọn
1/ √( √2-3) ²+ √( √2-3) ²
2/ √x-6. √x+9 -2 √x-3
3/ √( √3+5) ² -√( √3-5) ²
4/ √( √7-2 √2) ² + √( √7+ √8) ²
5/ 2 √a ²em
rút gọn
1, 1/3 x^2 y^5 ( -3/5 x^3 y ) + x^5 y^6
\(\dfrac{1}{3}x^2y^5\left(\dfrac{-3}{5}x^3y\right)+x^5y^6=\dfrac{-1}{5}x^5y^6+x^5y^6=\dfrac{4}{5}x^5y^6\)
1: Ta có: \(\dfrac{1}{3}x^2y^5\cdot\left(-\dfrac{3}{5}x^3y\right)+x^5y^6\)
\(=\dfrac{-1}{5}x^5y^6+x^5y^6\)
\(=\dfrac{4}{5}x^5y^6\)
Bài 1 : rút gọn
1, \(\sqrt{6+2\sqrt{5}}\) 2, \(\sqrt{15-6\sqrt{6}}-\sqrt{10-4\sqrt{6}}\)
3. \(\sqrt{31-10\sqrt{6}}-\sqrt{\left(3-2\sqrt{6}\right)^2}\)
1.\(\sqrt{1+2\sqrt{5}+5}=\sqrt{\left(1+\sqrt{5}\right)^2}=1+\sqrt{5}\)
2.\(\sqrt{10-4\sqrt{6}}=\sqrt{4-4\sqrt{6}+6}=\sqrt{\left(2-\sqrt{6}\right)^2}=\left|2-\sqrt{6}\right|=\sqrt{6}-2\) \(\sqrt{15-6\sqrt{6}}=\sqrt{9+6\sqrt{6}+6}=\sqrt{\left(3+\sqrt{6}\right)^2}=3+\sqrt{6}\)
=>\(\sqrt{15-6\sqrt{6}}-\sqrt{10-4\sqrt{6}}\)=\(3+\sqrt{6}-\sqrt{6}+2\)=5
3. Tương tự bằng :\(8-3\sqrt{6}\)
1) \(\sqrt{6+2\sqrt{5}}\) = \(\sqrt{1+2.1.\sqrt{5}+\sqrt{5}^2}\) = \(\sqrt{\left(1+\sqrt{5}\right)^2}\)
2) \(\sqrt{15-6\sqrt{6}}-\sqrt{10-4\sqrt{6}}\)
= \(\sqrt{3^2-2.3.\sqrt{6}+\sqrt{6}^2}\) - \(\sqrt{2^2.2.2.\sqrt{6}+\sqrt{6}^2}\)
= \(\sqrt{\left(3+\sqrt{6}\right)^2}\) - \(\sqrt{\left(2+\sqrt{6}\right)^2}\)
= \(\left|3+\sqrt{6}\right|\) - \(\left|2+\sqrt{6}\right|\)
= 3 + \(\sqrt{6}\) - 2 + \(\sqrt{6}\)
= 1 + 2\(\sqrt{6}\)
3) \(\sqrt{31-10\sqrt{6}}-\sqrt{\left(3-2\sqrt{6}\right)^2}\)
= \(\sqrt{5^2-2.5.\sqrt{6}+\sqrt{6}^2}\) - \(\sqrt{\left(3-2\sqrt{6}\right)^2}\)
= \(\sqrt{\left(5-\sqrt{6}\right)^2}\) - \(\sqrt{\left(3-2\sqrt{6}\right)^2}\)
= \(\left|5-\sqrt{6}\right|\) - \(\left|3-2\sqrt{6}\right|\)
= 5 - \(\sqrt{6}-3-2\sqrt{6}\)
= 2 - 3\(\sqrt{6}\)
Chúc bạn học tốt
Bài : Thu gọn
1) \(\dfrac{3\sqrt{5}-5\sqrt{3}}{\sqrt{15}-3}\)
2) \(\dfrac{\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{3}}\)
3) \(\dfrac{7+4\sqrt{3}}{2+\sqrt{3}}\)
4) \(\dfrac{16-6\sqrt{7}}{\sqrt{7}-3}\)
5) \(\dfrac{\left(\sqrt{3}-\sqrt{2}\right)^2+4\sqrt{6}}{\sqrt{3}+\sqrt{2}}\)
6) \(\dfrac{\left(\sqrt{3}+2\sqrt{5}\right)^2-8\sqrt{15}}{\sqrt{6-2\sqrt{10}}}\)
1.
\(\frac{3\sqrt{5}-5\sqrt{3}}{\sqrt{15}-3}=\frac{3\sqrt{5}-\sqrt{5}.\sqrt{15}}{\sqrt{15}-3}=\frac{-\sqrt{5}(\sqrt{15}-3)}{\sqrt{15}-3}=-\sqrt{5}\)
2.
\(\frac{\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{3}}=\frac{\sqrt{2+2\sqrt{2.3}+3}}{\sqrt{2}+\sqrt{3}}=\frac{\sqrt{(\sqrt{2}+\sqrt{3})^2}}{\sqrt{2}+\sqrt{3}}\)
\(=\frac{\sqrt{2}+\sqrt{3}}{\sqrt{2}+\sqrt{3}}=1\)
3.
\(\frac{7+4\sqrt{3}}{2+\sqrt{3}}=\frac{2^2+2.2\sqrt{3}+3}{2+\sqrt{3}}=\frac{(2+\sqrt{3})^2}{2+\sqrt{3}}=2+\sqrt{3}\)
4.
\(\frac{16-6\sqrt{7}}{\sqrt{7}-3}=\frac{3^2-2.3\sqrt{7}+7}{\sqrt{7}-3}=\frac{(\sqrt{7}-3)^2}{\sqrt{7}-3}=\sqrt{7}-3\)
5.
\(\frac{(\sqrt{3}-\sqrt{2})^2+4\sqrt{6}}{\sqrt{3}+\sqrt{2}}=\frac{3+2+2\sqrt{2.3}}{\sqrt{3}+\sqrt{2}}=\frac{(\sqrt{3}+\sqrt{2})^2}{\sqrt{3}+\sqrt{2}}=\sqrt{3}+\sqrt{2}\)
6.
\(=\frac{(\sqrt{3})^2+(2\sqrt{5})^2-2.\sqrt{3}.2\sqrt{5}}{\sqrt{6-2\sqrt{10}}}=\frac{(\sqrt{3}-2\sqrt{5})^2}{\sqrt{6-2\sqrt{10}}}\)
có ai biết giải bài này không hộ mình với mong các bạn giúp cho ( giải chi tiết hộ mình nhé, xin cảm ơn)
Bài 22: rút gọn
1, \(\sqrt{3-\sqrt{5}}\) 2, \(\sqrt{7+3\sqrt{5}}\)
3, \(\sqrt{9+\sqrt{17}}-\sqrt{9-\sqrt{17}}-2\)
Bài 26: giải các phương trình sau
1, /3-2x/=\(2\sqrt{5}\) →( dấu này '/ /' là dấu giá trị tuyệt đối nha mn
2, \(\sqrt{x^2}=12\) 3, \(\sqrt{x^2-2x+1}=7\)
có ai biết giải bài này không hộ mình với mong các bạn giúp cho ( giải chi tiết hộ mình nhé, xin cảm ơn)
Bài 22: rút gọn
1, \(\sqrt{3-\sqrt{5}}\) 2, \(\sqrt{7+3\sqrt{5}}\)
3, \(\sqrt{9+\sqrt{17}}-\sqrt{9-\sqrt{17}}-\sqrt{2}\)
Bài 26: giải các phương trình sau
1, /3-2x/=\(2\sqrt{5}\) →( dấu này '/ /' là dấu giá trị tuyệt đối nha mn)
2, \(\sqrt{x^2}=12\) 3, \(\sqrt{x^2-2x+1}=7\)
4, \(\sqrt{\left(x-1\right)^2}=x+3\)
22,
1, Đặt √(3-√5) = A
=> √2A=√(6-2√5)
=> √2A=√(5-2√5+1)
=> √2A=|√5 -1|
=> A=\(\dfrac{\sqrt{5}-1}{\text{√2}}\)
=> A= \(\dfrac{\sqrt{10}-\sqrt{2}}{2}\)
2, Đặt √(7+3√5) = B
=> √2B=√(14+6√5)
=> √2B=√(9+2√45+5)
=> √2B=|3+√5|
=> B= \(\dfrac{3+\sqrt{5}}{\sqrt{2}}\)
=> B= \(\dfrac{3\sqrt{2}+\sqrt{10}}{2}\)
3,
Đặt √(9+√17) - √(9-√17) -\(\sqrt{2}\)=C
=> √2C=√(18+2√17) - √(18-2√17) -\(2\)
=> √2C=√(17+2√17+1) - √(17-2√17+1) -\(2\)
=> √2C=√17+1- √17+1 -\(2\)
=> √2C=0
=> C=0
26,
|3-2x|=2\(\sqrt{5}\)
TH1: 3-2x ≥ 0 ⇔ x≤\(\dfrac{-3}{2}\)
3-2x=2\(\sqrt{5}\)
-2x=2\(\sqrt{5}\) -3
x=\(\dfrac{3-2\sqrt{5}}{2}\) (KTMĐK)
TH2: 3-2x < 0 ⇔ x>\(\dfrac{-3}{2}\)
3-2x=-2\(\sqrt{5}\)
-2x=-2√5 -3
x=\(\dfrac{3+2\sqrt{5}}{2}\) (TMĐK)
Vậy x=\(\dfrac{3+2\sqrt{5}}{2}\)
2, \(\sqrt{x^2}\)=12 ⇔ |x|=12 ⇔ x=12, -12
3, \(\sqrt{x^2-2x+1}\)=7
⇔ |x-1|=7
TH1: x-1≥0 ⇔ x≥1
x-1=7 ⇔ x=8 (TMĐK)
TH2: x-1<0 ⇔ x<1
x-1=-7 ⇔ x=-6 (TMĐK)
Vậy x=8, -6
4, \(\sqrt{\left(x-1\right)^2}\)=x+3
⇔ |x-1|=x+3
TH1: x-1≥0 ⇔ x≥1
x-1=x+3 ⇔ 0x=4 (KTM)
TH2: x-1<0 ⇔ x<1
x-1=-x-3 ⇔ 2x=-2 ⇔x=-1 (TMĐK)
Vậy x=-1
Rút gọn biểu thức :
a) A=\(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\).
b)B=\(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)
c) C=\(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}.\)
a) Ta có: \(A^3=\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)^3\)
\(=2+\sqrt{5}+2-\sqrt{5}+3\cdot\sqrt[3]{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)\)
\(=4-3\cdot A\)
\(\Leftrightarrow A^3+3A-4=0\)
\(\Leftrightarrow A^3-A+4A-4=0\)
\(\Leftrightarrow A\left(A-1\right)\left(A+1\right)+4\left(A-1\right)=0\)
\(\Leftrightarrow\left(A-1\right)\left(A^2+A+4\right)=0\)
\(\Leftrightarrow A=1\)
Rút gọn biểu thức: \(\frac{\sqrt{20+8\sqrt{3}} +\sqrt{20-8\sqrt{3}}}{\sqrt{5+2\sqrt{3}}-\sqrt{5-2\sqrt{3}}}-\frac{\sqrt{4+\sqrt{3}}+\sqrt{4-\sqrt{3}}}{\sqrt{4+\sqrt{3}}-\sqrt{4-\sqrt{3}}}\)
cho x=\(\left(\dfrac{\sqrt[3]{8-3\sqrt{5}}+\sqrt[3]{64-12\sqrt{20}}}{\sqrt[3]{57}}\right)\sqrt[3]{8+3\sqrt{5}}\);y=\(\left(\dfrac{\sqrt[3]{9}-\sqrt{2}}{\sqrt[3]{3}+\sqrt[4]{2}}+\dfrac{\sqrt{2}-9\sqrt[3]{9}}{\sqrt[4]{2}-\sqrt[3]{81}}\right)\)
a rút gọn x và y
b tính T = xy
\(x=\dfrac{3\sqrt[3]{8-3\sqrt{5}}}{\sqrt[3]{57}}.\sqrt[3]{8+3\sqrt{5}}=\dfrac{3\sqrt[3]{\left(8-3\sqrt{5}\right)\left(8+3\sqrt[]{5}\right)}}{\sqrt[3]{57}}=\sqrt[3]{\dfrac{19}{57}}=\dfrac{1}{\sqrt[3]{3}}\)
\(y=\dfrac{\left(\sqrt[3]{3}+\sqrt[4]{2}\right)\left(\sqrt[3]{3}-\sqrt[4]{2}\right)}{\sqrt[3]{3}+\sqrt[4]{2}}+\dfrac{\left(\sqrt[4]{2}-\sqrt[3]{81}\right)\left(\sqrt[4]{2}+\sqrt[3]{81}\right)}{\sqrt[4]{2}-\sqrt[3]{81}}\)
\(=\sqrt[3]{3}-\sqrt[4]{2}+\sqrt[4]{2}+\sqrt[3]{81}=\sqrt[3]{3}+3\sqrt[3]{3}=4\sqrt[3]{3}\)
\(T=xy=\dfrac{4\sqrt[3]{3}}{\sqrt[3]{3}}=4\)