Cho ΔABC vuông tại A có M là trung điểm của BC. Chứng minh AM=\(\frac{1}{2}BC\).
Cho ΔABC có M là trung điểm của BC , AM vuông góc với BC . Từ M kẻ Mt // AC , từ B kể đường vuông góc với BC cắt Mt tại N .
a, Chứng minh AM là phân giác của góc BAC ,
b, Chứng minh ΔAMB = ΔNBM,
c, MN cắt AB tại I . Chứng minh I là trung điểm của AB ,
d, Chứng minh AN // BC .
Bài 8 :
Cho ΔABC cân tại A có M là trung điểm của BC
a) Vẽ hình
b) Chứng minh rằng : AM là đường trung trực của ΔABC
c) Kẻ BH vuông góc với AC (H thuộc AC), CK vuông góc với AB (K thuộc AB). Chứng minh rằng : BH = CK
d) Chứng minh rằng : HK//BC
e) Gọi O là giao điểm của BH và CK
Chứng minh rằng : ba điểm AOM thẳng hàng
cho ΔABC có AB=AC. Gọi M là trung điểm của BC. Chứng minh rằng:
a) ΔAMB=ΔAMC
b) AM là tia phân giác của góc BAC
c) AM vuông góc BC
d) Vẽ At là tia phân gác của góc ngoài ở đỉnh A của ΔABC. Chứng minh: At//BC
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
cho ΔABC cân tại A. H là trung điểm BC, D là hình chiếu của H trên AC, M là trung điểm HD. Chứng minh AM vuông góc BD
Bài 1: Cho ΔABC; I là trung điểm BC. Trên AB lấy M; N sao cho
AM = MN = NB. Đường thẳng CM cắt AI tại K. CMR: KA = KM
Bài 2: Cho ΔABC vuông tại A có AB = 12 cm, BC = 13cm. Gọi M, N lần lượt
là trung điểm của AB và BC.
a. Chứng minh: MN vuông góc AB
b. Tính MN?
Bài 3: Cho ΔABC có AB = 16cm, BC = 20cm, AC = 12cm
a. CM: ΔABC vuông tại A
b. Gọi M là trung điểm của BC. Kẻ MF vuông góc AC tại F. CM: FA = FC
c. Gọi E là trung điểm của AB. CM: ME vuông góc với AB và tính độ dài
ME.
Bài 1:
Xét ΔBMC có
N là trung điểm của BM
I là trung điểm của BC
Do đó: NI là đường trung bình của ΔBMC
Suy ra: NI//MK
Xét ΔANI có
M là trung điểm của AN
MK//NI
Do đó: K là trung điểm của AI
Cho $\Delta ABC$ΔABC có M là trung điểm của BC.Chứng minh rằng :
a,Nếu $AM=\frac{BC}{2}$AM=BC2 thì $\Delta ABC$ΔABCvuông tại A
b,Nếu$\Delta ABC$ΔABCvuông tại A thì $AM=\frac{BC}{2}$
viết sai ai mà giải được đi kêu thánh xuống mà giải
1. Cho ΔABC. Trên nửa mặt phẳng bờ AB không chứa điểm B vẽ AD ⊥ và bằng AB; Trên nửa mặt phẳng bờ AC không chứa điểm C vẽ AE ⊥ và bằng AC.
a) Chứng minh CD = BE và CD ⊥ BE
b) Gọi M là trung điểm của BC. Chứng minh AM = 1/2 DE và AM ⊥ DE
2. Cho ΔABC qua A vẽ một đường thẳng xy // BC. Từ điểm M trên cạnh BC vẽ các đường thẳng // AB và AC chúng cắt xy theo thứ tự tại D và E. Cmr:
a) ΔABC = ΔMDE
b) Ba đường thẳng AM, DB, CE cùng đi qua một điểm( đồng qui)
3. ΔABC vuông cân tại A, có cạnh AB = 1cm. Vẽ AH ⊥ BC (H ∈ BC).
a) Chứng minh ΔABH = ΔACH
b) Tính AH
c) M là một điểm di chuyển trên cạnh BC, kẻ MP, MQ lần lượt ⊥ AB và AC. Chứng minh MP + MQ không đổi.
1. Cho ΔABC có AB = AC và AB > BC. Gọi M là trung điểm của cạnh BC
a) Chứng minh rằng ΔABC = ΔACM và AM là đường trung trực của BC
b) Trên tia đối của tia MA , lấy điểm D sao cho MD = MA . Chứng minh AB //CD
Vẽ hình giùm em
a)
Sửa đề: Chứng minh ΔABM=ΔACM
Xét ΔABM và ΔACM có
AB=AC(gt)
AM chung
BM=CM(M là trung điểm của BC)
Do đó: ΔABM=ΔACM(c-c-c)
Ta có: AB=AC(gt)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: MB=MC(M là trung điểm của BC)
nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AM là đường trung trực của BC
b) Xét ΔABM vuông tại M và ΔDCM vuông tại M có
MB=MC(M là trung điểm của BC)
AM=DM(gt)
Do đó: ΔABM=ΔDCM(hai cạnh góc vuông)
⇒\(\widehat{ABM}=\widehat{DCM}\)(hai góc tương ứng)
mà \(\widehat{ABM}\) và \(\widehat{DCM}\) là hai góc ở vị trí so le trong
nên AB//CD(Dấu hiệu nhận biết hai đường thẳng song song)
Cho ΔABC vuông tại A, đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AB, AC.
a) Chứng minh: AH = DE.
b) Chứng minh: ∠ADE = ∠BHD
c) Gọi M là trung điểm của BC. Chứng minh: DE = AM
a: Xét tứ giác AEHD có
\(\widehat{AEH}=\widehat{ADH}=\widehat{DAE}=90^0\)
Do đó: AEHD là hình chữ nhật
Suy ra: AH=DE