6sin^2x + 2sin^2 2x =5
giải các pt
a) \(2\left(cos^22x+cos^2x\right)=1\)
b) \(cos2x+sin^2x-2cosx+1=0\)
c) \(\frac{4}{cos^2x}+tanx=7\)
d) \(6sin^2x-2sin^22x=5\)
e) \(6sin^23x-cos12x=4\)
a/
\(\Leftrightarrow2cos^22x+2cos^2x-1=0\)
\(\Leftrightarrow2cos^22x+cos2x=0\)
\(\Leftrightarrow cos2x\left(2cos2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cos2x=-\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k\pi\\2x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=\pm\frac{\pi}{3}+k\pi\end{matrix}\right.\)
b/
\(\Leftrightarrow2cos^2x-1+1-cos^2x-2cosx+1=0\)
\(\Leftrightarrow cos^2x-2cosx+1=0\)
\(\Leftrightarrow\left(cosx-1\right)^2=0\)
\(\Rightarrow cosx=1\Rightarrow x=k2\pi\)
c/
\(4\left(1+tan^2x\right)+tanx-7=0\)
\(\Leftrightarrow4tan^2x+tanx-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\tanx=-\frac{3}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=arctan\left(-\frac{3}{4}\right)+k\pi\end{matrix}\right.\)
d/
\(\Leftrightarrow3\left(1-cos2x\right)-2\left(1-cos^22x\right)=5\)
\(\Leftrightarrow2cos^22x-3cos2x-4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=\frac{3+\sqrt{41}}{4}\left(l\right)\\cos2x=\frac{3-\sqrt{41}}{4}\end{matrix}\right.\)
\(\Rightarrow x=\pm\frac{1}{2}arccos\left(\frac{3-\sqrt{41}}{4}\right)+k\pi\)
Nghiệm xấu quá :(
2sin^2(2x+pi/3)-6sin(x+pi/6)+cos(x+pi/6)+2=0 Giúp e câu này với ạ, e đang cần gấp lắm ạ
2sin^2(2x+pi/3)-6sin(x+pi/6)+cos(x+pi/6)+2=0
giải phương trình:
a, \(tanx.sin^2x-2sin^2x=3\left(cos2x+sinxcosx\right)\)
b, \(5sinx-2=3\left(1-sinx\right)tan^2x\)
c,\(\frac{cos2x+3cot2x+4sinx}{cot2x-cos2x}=2\)
d, \(\frac{4sin^2x+6sin^2x-3cos2x-9}{cosx}=0\)
giải các pt
a) \(5\left(1+cosx\right)=2+sin^4x-cos^4x\)
b) \(\sqrt{3}tanx+cotx-\sqrt{3}-1=0\)
c) \(6sin^2x+2sin^22x=5\)
d) \(cos^22x+cos^2\left(x-\frac{\pi}{4}\right)-1=0\)
e) \(\left(1+tan^2x\right)\left(9-13cosx\right)+4=0\)
a/
\(\Leftrightarrow5+5cosx=2+\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)\)
\(\Leftrightarrow3+5cosx=sin^2x-cos^2x\)
\(\Leftrightarrow3+5cosx=\left(1-cos^2x\right)-cos^2x\)
\(\Leftrightarrow2cos^2x+5cosx+2=0\)
\(\Rightarrow\left[{}\begin{matrix}cosx=-2\left(l\right)\\cosx=-\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow x=\pm\frac{2\pi}{3}+k2\pi\)
b/ ĐKXĐ: ...
\(\Leftrightarrow\sqrt{3}tanx+\frac{1}{tanx}-\sqrt{3}-1=0\)
\(\Leftrightarrow\sqrt{3}tan^2x-\left(\sqrt{3}+1\right)tanx+1=0\)
\(a+b+c=\sqrt{3}-\left(\sqrt{3}+1\right)+1=0\)
\(\Rightarrow\left[{}\begin{matrix}tanx=1\\tanx=\frac{1}{\sqrt{3}}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{\pi}{6}+k\pi\end{matrix}\right.\)
c/
\(\Leftrightarrow6\left(\frac{1-cos2x}{2}\right)+2\left(1-cos^22x\right)=5\)
\(\Leftrightarrow-2cos^22x-3cos2x=0\)
\(\Leftrightarrow cos2x\left(2cos2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cos2x=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow2x=\frac{\pi}{2}+k\pi\)
\(\Rightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\)
d/
\(\Leftrightarrow cos^22x+\frac{1}{2}+\frac{1}{2}cos\left(2x-\frac{\pi}{2}\right)-1=0\)
\(\Leftrightarrow1-sin^22x+\frac{1}{2}sin2x-\frac{1}{2}=0\)
\(\Leftrightarrow-2sin^22x+sin2x+1=0\)
\(\Rightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=-\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k2\pi\\2x=-\frac{\pi}{6}+k2\pi\\2x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=-\frac{\pi}{12}+k\pi\\x=\frac{7\pi}{12}+k\pi\end{matrix}\right.\)
Cm các đẳng thức sau không phụ thuộc vào giá trị x,y
\(\left(cotx+tanx\right)^2-\left(cotx-tanx\right)^2\)
\(cos^2x.cot^2x+3cos^2x-cot^2x+2sin^2x\)
\(sin^8x+cos^8x+6sin^4x.cos^4x+4sin^2x.cos^2x\left(sin^4x+cos^4x\right)+1\)
Mọi người giải chi tiết giúp mình, mình cảm ơn
\(A=cot^2x+tan^2x+2-\left(cot^2x+tan^2x-2\right)=4\)
\(B=cos^2x.cot^2x-cot^2x+cos^2x+2\left(sin^2x+cos^2x\right)\)
\(=cot^2x\left(cos^2x-1\right)+cos^2x+2\)
\(=-cot^2x.sin^2x+cos^2x+2\)
\(=-cos^2x+cos^2x+2=2\)
\(C=\left(sin^4x+cos^4x\right)^2+4sin^4x.cos^4x+4sin^2xcos^2x\left(sin^4x+cos^4x\right)+1\)
\(=\left(sin^4x+cos^4x+2sin^2x.cos^2x\right)^2+1\)
\(=\left(sin^2x+cos^2x\right)^4+1\)
\(=1^4+1=2\)
2sin^2.2x-3cos2x+6sin^2-9=0. Giúp e giải pt này vs ạ
Đề là: \(2sin^22x-3cos2x+6sin^2x-9=0\) đúng không nhỉ?
\(\Leftrightarrow2\left(1-cos^22x\right)-3cos2x+3\left(1-cos2x\right)-9=0\)
\(\Leftrightarrow-2cos^22x-6cos2x-4=0\)
\(\Leftrightarrow cos^22x+3cos2x+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-1\\cos2x=-2\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow...\)
Giải các phương trình sau
1) 4cos2x - 6sin2x + 5 sin2x - 4 =0
2) \(\sqrt{3}\)cos2x + 2sinxcosx - \(\sqrt{3}\)sin2x - 1 =0
3) 2sin22x - 3sin2x.cos2x + cos22x = 2
4) 4cos2 \(\dfrac{x}{2}\)+\(\dfrac{1}{2}\)sinx +3sin2\(\dfrac{x}{2}\) = 3
1: \(\Leftrightarrow4\cdot\dfrac{1+\cos2x}{2}-6\cdot\dfrac{1-\cos2x}{2}+5\sin2x-4=0\)
\(\Leftrightarrow2+2\cos2x-3+3\cos2x+5\sin2x-4=0\)
\(\Leftrightarrow5\sin2x+5\cos2x=5\)
\(\Leftrightarrow\cos2x+\sin2x=1\)
\(\Leftrightarrow\sqrt{2}\cdot\sin\left(2x+\dfrac{\Pi}{4}\right)=1\)
\(\Leftrightarrow\sin\left(2x+\dfrac{\Pi}{4}\right)=\dfrac{1}{\sqrt{2}}\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+\dfrac{\Pi}{4}=\dfrac{\Pi}{4}+k2\Pi\\2x+\dfrac{\Pi}{4}=\dfrac{3\Pi}{4}+k2\Pi\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=k\Pi\\x=\dfrac{\Pi}{4}+k\Pi\end{matrix}\right.\)
2: \(\Leftrightarrow\sqrt{3}\cdot\dfrac{1+\cos2x}{2}+\sin2x-\sqrt{3}\cdot\dfrac{1-\cos2x}{2}-1=0\)
\(\Leftrightarrow\dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{3}}{2}\cos2x+\sin2x+\sqrt{3}\cdot\dfrac{\cos2x-1}{2}-1=0\)
\(\Leftrightarrow\sin2x+\dfrac{\sqrt{3}}{2}\cos2x+\dfrac{\sqrt{3}}{2}\cos2x-\dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{3}-2}{2}=0\)
\(\Leftrightarrow\sin2x+\sqrt{3}\cos2x=\dfrac{\sqrt{3}-\sqrt{3}+2}{2}=1\)
\(\Leftrightarrow\sin\left(2x+\dfrac{\Pi}{3}\right)=\dfrac{1}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+\dfrac{\Pi}{3}=\dfrac{\Pi}{6}+k2\Pi\\2x+\dfrac{\Pi}{3}=\dfrac{5}{6}\Pi+k2\Pi\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{12}\Pi+k\Pi\\x=\dfrac{\Pi}{4}+k\Pi\end{matrix}\right.\)
Tập xác định của hàm số y=5-4cotx/6sin^2x -3 là
ĐKXĐ: \(\left\{{}\begin{matrix}sinx\ne0\\6sin^2x-3\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}sinx\ne0\\cos2x\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ne k\pi\\2x\ne\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\ne k\pi\\x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\end{matrix}\right.\)
Giải phương trình:
a, \(2sin^2x+2sinxcosx-3cos^2x=0\).
b, \(2sin^2x-3sinxcosx+cos^2x=0\).
c, \(2sin^2x-5sinxcosx+3cos^2x=0\).
b) \(2sin^2x-3sinxcosx+cos^2x=0\)
\(\Leftrightarrow2tan^2x-3tanx+1=0\left(cosx\ne0\Leftrightarrow x\ne\dfrac{\pi}{2}+k\pi\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\tanx=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=tan\dfrac{\pi}{4}\\tanx=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=arctan\left(\dfrac{1}{2}\right)+k\pi\end{matrix}\right.\left(k\in Z\right)\)