Bài 3: Một số phương trình lượng giác thường gặp

JE

giải các pt

a) \(5\left(1+cosx\right)=2+sin^4x-cos^4x\)

b) \(\sqrt{3}tanx+cotx-\sqrt{3}-1=0\)

c) \(6sin^2x+2sin^22x=5\)

d) \(cos^22x+cos^2\left(x-\frac{\pi}{4}\right)-1=0\)

e) \(\left(1+tan^2x\right)\left(9-13cosx\right)+4=0\)

NL
26 tháng 7 2020 lúc 20:55

a/

\(\Leftrightarrow5+5cosx=2+\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)\)

\(\Leftrightarrow3+5cosx=sin^2x-cos^2x\)

\(\Leftrightarrow3+5cosx=\left(1-cos^2x\right)-cos^2x\)

\(\Leftrightarrow2cos^2x+5cosx+2=0\)

\(\Rightarrow\left[{}\begin{matrix}cosx=-2\left(l\right)\\cosx=-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow x=\pm\frac{2\pi}{3}+k2\pi\)

b/ ĐKXĐ: ...

\(\Leftrightarrow\sqrt{3}tanx+\frac{1}{tanx}-\sqrt{3}-1=0\)

\(\Leftrightarrow\sqrt{3}tan^2x-\left(\sqrt{3}+1\right)tanx+1=0\)

\(a+b+c=\sqrt{3}-\left(\sqrt{3}+1\right)+1=0\)

\(\Rightarrow\left[{}\begin{matrix}tanx=1\\tanx=\frac{1}{\sqrt{3}}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{\pi}{6}+k\pi\end{matrix}\right.\)

Bình luận (0)
NL
26 tháng 7 2020 lúc 20:57

c/

\(\Leftrightarrow6\left(\frac{1-cos2x}{2}\right)+2\left(1-cos^22x\right)=5\)

\(\Leftrightarrow-2cos^22x-3cos2x=0\)

\(\Leftrightarrow cos2x\left(2cos2x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cos2x=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow2x=\frac{\pi}{2}+k\pi\)

\(\Rightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\)

Bình luận (0)
NL
26 tháng 7 2020 lúc 21:00

d/

\(\Leftrightarrow cos^22x+\frac{1}{2}+\frac{1}{2}cos\left(2x-\frac{\pi}{2}\right)-1=0\)

\(\Leftrightarrow1-sin^22x+\frac{1}{2}sin2x-\frac{1}{2}=0\)

\(\Leftrightarrow-2sin^22x+sin2x+1=0\)

\(\Rightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k2\pi\\2x=-\frac{\pi}{6}+k2\pi\\2x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=-\frac{\pi}{12}+k\pi\\x=\frac{7\pi}{12}+k\pi\end{matrix}\right.\)

Bình luận (0)
NL
26 tháng 7 2020 lúc 21:02

e/

ĐKXĐ: ...

\(\Leftrightarrow\frac{1}{cos^2x}\left(9-13cosx\right)+4=0\)

\(\Leftrightarrow\frac{9}{cos^2x}-\frac{13}{cosx}+4=0\)

Đặt \(\frac{1}{cosx}=t\)

\(\Rightarrow9t^2-13t+4=0\)

\(\Rightarrow\left[{}\begin{matrix}t=1\\t=\frac{4}{9}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\frac{1}{cosx}=1\\\frac{1}{cosx}=\frac{4}{9}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}cosx=1\\cosx=\frac{9}{4}>1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x=k2\pi\)

Bình luận (0)

Các câu hỏi tương tự
JE
Xem chi tiết
MN
Xem chi tiết
JE
Xem chi tiết
LN
Xem chi tiết
SB
Xem chi tiết
TH
Xem chi tiết
HH
Xem chi tiết
NA
Xem chi tiết
TH
Xem chi tiết