Tính tích phân từ -π/4 đến π/4 của dx/ cos^2x(1+e^-3x)
Tìm GTLN, GTNN của hàm số:
y=sin4x + cos4x
y=3sinx + 4cosx
y= cos(2x+π/4)-cos(2x-π/4)
\(y=\sin^4x+\cos^4x\\ =1-2\sin^2x\cdot\cos^2x\\ =1-\dfrac{1}{2}\sin^22x\\ 0\le\sin^22x\le1\\ \Leftrightarrow\dfrac{1}{2}\le y\le1\\ y_{min}=\dfrac{1}{2}\Leftrightarrow\sin^22x=1\Leftrightarrow x=\dfrac{k\pi}{2}\pm\dfrac{\pi}{4}\\ y_{max}=1\Leftrightarrow\sin^22x=0\Leftrightarrow x=k\pi\)
\(y=3\sin x+4\cos x\\ =5\left(\dfrac{3\sin x}{5}+\dfrac{4\cos x}{5}\right)\\ =5\cos\left(x-a\right),\forall\cos a=\dfrac{4}{5},\sin a=\dfrac{3}{5}\\ -1\le\cos\left(x-a\right)\le1\\ \Leftrightarrow-5\le y\le5\\ y_{min}=-5\Leftrightarrow\cos\left(x-a\right)=-1\\ y_{max}=5\Leftrightarrow\cos\left(x-a\right)=1\)
\(y=sin^4x+cos^4x\)
Ta có: \(0\le sin^4x\le1\)
\(0\le cos^4x\le1\)
\(0\le sin^4x+cos^4x\le2\)
Vây GTNN là 0, GTLN là 2
y=3sinx+4cosx
\(-3\le3sinx\le3\\ -4\le4cosx\le4\\ -7\le3sinx+4cosx\le7\)
Vậy GTNN là -7, GTLN là 7
Tính:F=Cos(π/4+α) x cos(π/4-α)
G=Sin(π/3+α) x cos(π/3-α)
H=cos(π/2-α) x sin(π/2+α)
I=sin(π/4+α) - cos(π/4-α)
K=cos(π/6-x) - sin(π/3+x)
cos(4x) + cos(2x) +sin(2x) +2 = 2\(\sqrt{2}\) sin(x+π/4)+2cos2(2x)
\(\frac{cos^2X-2cos\left(X+\frac{3Π}{4}\right)Sin\left(3x-\frac{Π}{4}\right)-2}{2cosx-\sqrt{2}}=0\)
điều kiện : cosx\(\ne\)\(\frac{1}{\sqrt{2}}\)=> x\(\ne\)\(\pm\)\(\frac{\pi}{4}\)+2k\(\pi\), k\(\in\)Z
pt<=> tử số =0
<=>cos2x-sin(3x-\(\frac{\pi}{4}\)+x+\(\frac{3\pi}{4}\))-sin(3x-\(\frac{\pi}{4}\)-x-\(\frac{3\pi}{4}\))-2=0
<=> cos2x-sin(x+\(\frac{\pi}{2}\))-sin(2x-\(\pi\))-2=0
<=> cos2x-cosx+sin2x-2sin2x-2cos2x=0
<=>-cos2x-coxs+2sinx.cosx-2sin2x=0
đến đây bạn nhóm lại ra nghiệm rồi kiểm tra đk là xong
Giải pt √3.cos(2x-π/4)=-3
\(\sqrt{3}cos\left(2x-\dfrac{\pi}{4}\right)=-3\)
\(\Leftrightarrow cos\left(2x-\dfrac{\pi}{4}\right)=-\sqrt{3}< -1\)
Phương trình vô nghiệm
Giải các pt sau:
1. sin\(^2\) 2x = cos\(^2\) (x-π/4)
2. sin\(^2\)x + cos\(^2\)4x = 2
1.
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2}cos4x=\dfrac{1}{2}+\dfrac{1}{2}cos\left(2x-\dfrac{\pi}{2}\right)\)
\(\Leftrightarrow-cos4x=cos\left(2x-\dfrac{\pi}{2}\right)\)
\(\Leftrightarrow cos\left(4x-\pi\right)=cos\left(2x-\dfrac{\pi}{2}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-\pi=2x-\dfrac{\pi}{2}+k2\pi\\4x-\pi=\dfrac{\pi}{2}-2x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{\pi}{4}+\dfrac{k\pi}{3}\end{matrix}\right.\)
\(\Leftrightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{3}\)
2.
\(\Leftrightarrow1-cos^2x+1-sin^24x=2\)
\(\Leftrightarrow cos^2x+sin^24x=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}cosx=0\\sin4x=0\end{matrix}\right.\)
\(\Leftrightarrow cosx=0\)
\(\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\)
Chứng minh các đẳng thức sau:
a, sinx + cosx = \(\sqrt{2}\) sin(x + \(\frac{\text{π}}{4}\)) = \(\sqrt{2}\) cos(x - \(\frac{\text{π}}{4}\))
b, sinx - cosx = \(\sqrt{2}\) sin(x - \(\frac{\text{π}}{4}\)) = -\(\sqrt{2}\) cos(x - \(\frac{\text{π}}{4}\))
c, sin4x - cos4x + sin2x = \(\sqrt{2}\) cos(2x - \(\frac{\text{π}}{4}\))
\(sinx+cosx=\sqrt{2}\left(\frac{\sqrt{2}}{2}sinx+\frac{\sqrt{2}}{2}cosx\right)=\sqrt{2}\left(sinx.cos\frac{\pi}{4}+cosx.sin\frac{\pi}{4}\right)=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\)
\(=\sqrt{2}cos\left(\frac{\pi}{2}-\left(x+\frac{\pi}{4}\right)\right)=\sqrt{2}cos\left(\frac{\pi}{4}-x\right)=\sqrt{2}cos\left(x-\frac{\pi}{4}\right)\)
\(sinx-cosx=\sqrt{2}\left(\frac{\sqrt{2}}{2}sinx-\frac{\sqrt{2}}{2}cosx\right)=\sqrt{2}\left(sinx.cos\frac{\pi}{4}-cosx.sin\frac{\pi}{4}\right)=\sqrt{2}sin\left(x-\frac{\pi}{4}\right)\)
\(=-\sqrt{2}sin\left(\frac{\pi}{4}-x\right)=-\sqrt{2}cos\left(\frac{\pi}{2}-\left(\frac{\pi}{4}-x\right)\right)=-\sqrt{2}cos\left(x+\frac{\pi}{4}\right)\)
\(sin^4x-cos^4x=\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)+sin2x\)
\(=sin^2x-cos^2x+sin2x=sin2x-cos2x\)
\(=\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)\)
Bạn ghi ko đúng đề