Những câu hỏi liên quan
TT
Xem chi tiết
NL
1 tháng 4 2021 lúc 16:37

a. Bạn tự giải

b. Pt có nghiệm kép khi:

\(\Delta'=\left(m+1\right)^2-4m=0\Leftrightarrow m^2-2m+1=0\Leftrightarrow m=1\)

Khi đó: \(x_{1,2}=m+1=2\)

c. Do pt có nghiệm bằng 4:

\(\Rightarrow4^2-2\left(m+1\right).4+4m=0\)

\(\Leftrightarrow8-4m=0\Rightarrow m=2\)

\(x_1x_2=4m\Rightarrow x_2=\dfrac{4m}{x_1}=\dfrac{4.2}{4}=2\)

Bình luận (0)
MA
Xem chi tiết
H24
Xem chi tiết
NT
21 tháng 2 2023 lúc 23:26

\(\Delta=\left(2m-2\right)^2-4\cdot2\cdot\left(m+2-\sqrt{2}\right)\)

\(=4m^2-8m+4-8m-8+8\sqrt{2}\)

\(=4m^2-16m+8\sqrt{2}-4\)

Để phương trình có nghiệm kép thì \(4m^2-16m+8\sqrt{2}-4=0\)

=>\(m^2-4m+2\sqrt{2}-1=0\)

=>\(\Delta=\left(-4\right)^2-4\left(2\sqrt{2}-1\right)=16-8\sqrt{2}+4=20-8\sqrt{2}>0\)

=>Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}m=\dfrac{4-\sqrt{20-8\sqrt{2}}}{2}=2-\sqrt{5-2\sqrt{2}}\\m=2+\sqrt{5-2\sqrt{2}}\end{matrix}\right.\)

Bình luận (0)
SK
Xem chi tiết
NH
21 tháng 6 2017 lúc 14:01

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

Bình luận (0)
NT
Xem chi tiết
H24
22 tháng 1 2021 lúc 20:57

a) Thay \(m=1\) vào phương trình, ta được:

  \(x^2+12x-4=0\) \(\Rightarrow\left[{}\begin{matrix}x=-6+2\sqrt{10}\\x=-6-2\sqrt{10}\end{matrix}\right.\)

  Vậy ...

b) 

+) Với \(m=0\) \(\Rightarrow12x-4=0\) \(\Leftrightarrow x=\dfrac{1}{3}\)

+) Với \(m\ne0\), ta có: \(\Delta'=36+4m\)

 Để phương trình có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'>0\) \(\Leftrightarrow m>-9\)

   Vậy \(\left\{{}\begin{matrix}m\ne0\\m>-9\end{matrix}\right.\) thì phương trình có 2 nghiệm phân biệt

c) Để phương trình có nghiệm kép \(\Leftrightarrow\Delta'=0\) \(\Leftrightarrow m=-9\)

\(\Rightarrow-9x^2+12x-4=0\) \(\Leftrightarrow x=\dfrac{2}{3}\)

   Vậy \(m=-9\) thì phương trình có nghiệm kép \(x_1=x_2=\dfrac{2}{3}\)

d) Để phương trình vô nghiệm \(\Leftrightarrow\Delta'< 0\) \(\Leftrightarrow m< -9\)

   Vậy \(m< -9\) thì phương trình vô nghiệm

 

Bình luận (0)
GF
Xem chi tiết
TL
19 tháng 5 2020 lúc 20:34

a) PT có nghiệm kép nếu

\(\hept{\begin{cases}m-1\ne0\\\Delta'=\left(m-1\right)^2+m\left(m-1\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}m\ne1\\\left(m-1\right)\left(2m-1\right)=0\end{cases}\Leftrightarrow}m=\frac{1}{2}}\)

Vậy \(m=\frac{1}{2}\)thì pt có nghiệm kép

\(x_1=x_2=-\frac{b}{2a}=-\frac{2\left(m-1\right)}{2\left(m-1\right)}=-1\)

b) Để pt có nghiệm phân biệt đều âm thì

\(\hept{\begin{cases}m-1\ne0\\\Delta'=\left(m-1\right)\left(2m-1\right)>0\end{cases}}\)

\(\hept{\begin{cases}x_1\cdot x_2=-\frac{m}{m-1}>0\\x_1+x_2=\frac{2\left(m-1\right)}{m-1}< 0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}m>1\\m< \frac{1}{2}\end{cases}}\)và \(0< m< 1\)

Vậy 0<m<\(\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
PN
19 tháng 5 2020 lúc 20:36

định gõ ấn f5 cái thì thấy bạn làm xong r :(( 

giải nhanh quá ! 

Bình luận (0)
 Khách vãng lai đã xóa
GF
19 tháng 5 2020 lúc 20:39

thế kết luận như thế nào vậy?

Bình luận (0)
 Khách vãng lai đã xóa
DK
Xem chi tiết
NL
3 tháng 3 2022 lúc 0:36

a. Với \(m=0\Rightarrow-x-1=0\Rightarrow x=-1\) pt có nghiệm (ktm)

Với \(m\ne0\) pt vô nghiệm khi:

\(\Delta=\left(m-1\right)^2-4m\left(m-1\right)< 0\)

\(\Leftrightarrow\left(m-1\right)\left(-3m-1\right)< 0\)

\(\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)

b. Phương trình có 2 nghiệm trái dấu khi \(ac< 0\)

\(\Leftrightarrow m\left(m-1\right)< 0\Rightarrow0< m< 1\)

c. Từ câu a ta suy ra pt có 2 nghiệm khi \(\left\{{}\begin{matrix}m\ne0\\-\dfrac{1}{3}\le m\le1\end{matrix}\right.\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-m}{m}\\x_1x_2=\dfrac{m-1}{m}\end{matrix}\right.\)

\(x_1^2+x_2^2-3>0\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-3>0\)

\(\Leftrightarrow\left(\dfrac{1-m}{m}\right)^2-2\left(\dfrac{m-1}{m}\right)-3>0\)

Đặt \(\dfrac{m-1}{m}=t\Rightarrow t^2-2t-3>0\Rightarrow\left[{}\begin{matrix}t>3\\t< -1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{m-1}{m}>3\\\dfrac{m-1}{m}< -1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\dfrac{-2m-1}{m}>0\\\dfrac{2m-1}{m}< 0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{2}< m< 0\\0< m< \dfrac{1}{2}\end{matrix}\right.\)

Kết hợp điều kiện có nghiệm \(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{3}\le m< 0\\0< m< \dfrac{1}{2}\end{matrix}\right.\)

Bình luận (0)
LH
Xem chi tiết
NT
11 tháng 3 2022 lúc 21:22

\(\Delta'=\left(m+3\right)^2-\left(m^2-2\right)=6m+9+4=6m+13\)

Để pt có 2 nghiệm kép khi \(6m+13=0\Leftrightarrow m=-\dfrac{13}{6}\)

\(x_1=x_2=2\left(m+3\right)=2\left(-\dfrac{13}{6}+3\right)=\dfrac{5}{3}\)

Bình luận (0)
BM
Xem chi tiết
NT
9 tháng 1 2024 lúc 10:46

a: \(x^2+\left(2m+1\right)x+m^2-3=0\)

\(\text{Δ}=\left(2m+1\right)^2-4\left(m^2-3\right)\)

\(=4m^2+4m+1-4m^2+12=4m+13\)

Để phương trình có nghiệm kép thì 4m+13=0

=>\(m=-\dfrac{13}{4}\)

Thay m=-13/4 vào phương trình, ta được:

\(x^2+\left(2\cdot\dfrac{-13}{4}+1\right)x+\left(-\dfrac{13}{4}\right)^2-3=0\)

=>\(x^2-\dfrac{11}{2}x+\dfrac{121}{16}=0\)

=>\(\left(x-\dfrac{11}{4}\right)^2=0\)

=>x-11/4=0

=>x=11/4

b: TH1: m=2

Phương trình sẽ trở thành \(\left(2+1\right)x+2-3=0\)

=>3x-1=0

=>3x=1

=>\(x=\dfrac{1}{3}\)

=>Khi m=2 thì phương trình có nghiệm kép là x=1/3

TH2: m<>2

\(\text{Δ}=\left(m+1\right)^2-4\left(m-2\right)\left(m-3\right)\)

\(=m^2+2m+1-4\left(m^2-5m+6\right)\)

\(=m^2+2m+1-4m^2+20m-24\)

\(=-3m^2+22m-23\)

Để phương trình có nghiệm kép thì Δ=0

=>\(-3m^2+22m-23=0\)

=>\(m=\dfrac{11\pm2\sqrt{13}}{3}\)

*Khi \(m=\dfrac{11+2\sqrt{13}}{3}\) thì \(x_1+x_2=\dfrac{-m-1}{m-2}=\dfrac{2-2\sqrt{13}}{3}\)

=>\(x_1=x_2=\dfrac{1-\sqrt{13}}{3}\)

*Khi \(m=\dfrac{11-2\sqrt{13}}{3}\) thì \(x_1+x_2=\dfrac{-m-1}{m-2}=\dfrac{2+2\sqrt{13}}{3}\)

=>\(x_1=x_2=\dfrac{1+\sqrt{13}}{3}\)

c: TH1: m=0

Phương trình sẽ trở thành

\(0x^2-\left(1-2\cdot0\right)x+0=0\)

=>-x=0

=>x=0

=>Nhận

TH2: m<>0

\(\text{Δ}=\left(-1+2m\right)^2-4\cdot m\cdot m\)

\(=4m^2-4m+1-4m^2=-4m+1\)

Để phương trình có nghiệm kép thì -4m+1=0

=>-4m=-1

=>\(m=\dfrac{1}{4}\)

Khi m=1/4 thì \(x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left[-1+2m\right]}{m}=\dfrac{-2m+1}{m}\)

=>\(x_1+x_2=\dfrac{-2\cdot\dfrac{1}{4}+1}{\dfrac{1}{4}}=\dfrac{-\dfrac{1}{2}+1}{\dfrac{1}{4}}=\dfrac{1}{2}:\dfrac{1}{4}=2\)

=>\(x_1=x_2=\dfrac{2}{2}=1\)

Bình luận (0)