Cho điểm A nằm ngoài đường tròn (O;R); vẽ các tiếp tuyến AB, AC đến đường tròn .Trên cung lớn BC lấy điểm K bất kì tiếp tuyến K cắt AB và AC tại P và Q. OP và OQ cắt (O) tại M và N. Cmr khoảng cách từ O đến MN không phụ thuộc vào vị trí của K
Cho điểm A nằm ngoài đường tròn (O;R); vẽ các tiếp tuyến AB, AC đến đường tròn .Trên cung lớn BC lấy điểm K bất kì tiếp tuyến K cắt AB và AC tại P và Q. OP và OQ cắt (O) tại M và N. Cmr khoảng cách từ O đến MN không phụ thuộc vào vị trí của K
Cho hai đường tròn (O;R) và (O';r) tiếp xúc trong tại I (R>r).Tiếp tuyến tại K của (O';r) cắt (O;R) tại P,Q.Tia IK cắt (O;R)tại F.Chứng minh cung FP = cung FG
cho tam giác ABC vuông tsij A, AB<AC, đường tròn tâm N đường kính AB, và đường tròn tâm M đường kính Ac cắt nhau tại H , chứng minh :A, M ,H ,N cùng thuộc 1 đường tròn
Xét (M) có
ΔAHB nội tiếp
AB là đường kính
Do đó: ΔAHB vuông tại H
=>\(\widehat{AHB}=90^0\)
Xét (N) có
ΔAHC nội tiếp
AC là đường kính
Do đó: ΔAHC vuông tại H
=>\(\widehat{AHC}=90^0\)
\(\widehat{AHB}+\widehat{AHC}=90^0+90^0=180^0\)
=>B,H,C thẳng hàng
=>AH\(\perp\)BC
Xét ΔNAM và ΔNHM có
NA=NH
AM=HM
NM chung
Do đó: ΔNAM=ΔNHM
=>\(\widehat{NAM}=\widehat{NHM}=90^0\)
Xét tứ giác AMHN có
\(\widehat{MAN}+\widehat{MHN}=90^0+90^0=180^0\)
=>AMHN là tứ giác nội tiếp
Cho đường tròn (O; R). Qua điểm A thuộc đường tròn, kẻ tiếp tuyến Ax, trên đó lấy điểm B sao cho \(OB=\sqrt{2}R\), OB cắt đường tròn (O) ở C.
a) Tính số đo góc ở tâm tạo bởi hai bán kính OA, OC;
b) Tính số đo các cung AC của đường tròn (O).
a: Xét ΔBAO vuông tại A có \(cosAOB=\dfrac{OA}{OB}=\dfrac{1}{\sqrt{2}}\)
=>\(\widehat{AOC}=45^0\)
=>\(sđ\left(OA;OC\right)=45^0\)
b: Số đo cung AC nhỏ là:
\(sđ\stackrel\frown{AC}=45^0\)
Số đo cung AC lớn là:
3600-450=3150
Lời giải:
a.
Ta thấy $OC=OD=R$ nên tam giác $OCD$ cân tại $O$
$\Rightarrow$ đường cao $OM$ đồng thời là trung tuyến
$\Rightarrow M$ là trung điểm của $CD$
Tứ giác $ACED$ có 2 đường chéo $AE, CD$ cắt nhau tại trung điểm $M$ của mỗi đường nên là hình bình hành.
Mà $AE\perp CD$ nên $ACED$ là hình thoi.
b. Vì $ACED$ là hình thoi nên $AC\parallel DE(1)$
Mà $\widehat{ACB}=90^0$ (góc nội tiếp chắn nửa đường tròn - AB)
$\Rightarrow AC\perp CB(2)$
Từ $(1); (2)\Rightarrow DE\perp CB$
Mà $BE\perp CD$ nên $E$ là trực tâm của $BCD$.
Từ một điểm S ở ngoài đường tròn (O) kẻ hai đường thẳng cắt đường tròn (O) lần lượt tại A, B, C,D (A nằm giữa S và B, C nằm giữa S và D). Chứng minh rằng nếu AB = CD thì SA = SC.
Giúp mình với ạ
Xét (O) có
AB,CD là dây
AB=CD
Do đó: AC//BD
Xét ΔSBD có AC//BD
nên SA/AB=SC/CD
mà AB=CD
nên SA=SC
cho (o;r) đg kính ab.trên tia đối của tia ba lấy đ c, qua c kẻ một đg thg cắt (o) tại e và d(e nằm giữa c và ) biết góc doe =90 độ và OC=3R
A) Tính CD,EC theo R
B) Chứng min CE.CD=CA.CB
b) Xét ΔCEB và ΔCAD có
\(\widehat{CEB}=\widehat{CAD}\left(=180^0-\widehat{DEB}\right)\)
\(\widehat{C}\) chung
Do đó: ΔCEB\(\sim\)ΔCAD(g-g)
Suy ra: \(\dfrac{CE}{CA}=\dfrac{CB}{CD}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(CE\cdot CD=CA\cdot CB\)(đpcm)
a)Áp dụng định lí py-ta-go có:
\(DE=\sqrt{OD^2+OE^2}=\sqrt{R^2+R^2}=\sqrt{2}R\)
Dễ chứng minh được: \(\Delta EBC\sim\Delta DAC\left(g.g\right)\)
\(\Rightarrow\dfrac{BC}{AC}=\dfrac{CE}{DC}\)\(\Rightarrow CD=\dfrac{AC.BC}{EC}=\dfrac{\left(OA+OC\right).\left(OC-OB\right)}{DC-DE}\)
\(\Leftrightarrow CD=\dfrac{8R^2}{DC-\sqrt{2}R}\)
\(\Leftrightarrow DC^2-\sqrt{2}R.DC-8R^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}CD=\dfrac{R\left(\sqrt{34}+\sqrt{2}\right)}{2}\\CD=\dfrac{R\left(-\sqrt{34}+\sqrt{2}\right)}{2}\left(ktm\right)\end{matrix}\right.\)
\(\Rightarrow CD=\dfrac{R\left(\sqrt{34}+\sqrt{2}\right)}{2}\)
Có \(EC=DC-DE=\dfrac{R\left(\sqrt{34}+\sqrt{2}\right)}{2}-\sqrt{2}R=\dfrac{R\left(\sqrt{34}-\sqrt{2}\right)}{2}\)
Vậy...
cho tứ giác ABCD có bốn đỉnh A, B, C, D nằm trên đường tròn (O;R) có AB vuông góc với BD. kẻ đường kính CE.
c/m AB^2 +CD^2 +BC^2 +AD^2= 8R^2
Số đo cung PQ lớn của đường tròn (O; R) có dây PQ = \(R\sqrt{2}\) bằng bao nhiêu độ?
Lời giải:
Từ $O$ kẻ $OH\perp PQ$. Tam giác $OPQ$ cân tại $O$ nên đường cao $OH$ đồng thời là đường trung tuyến và phân giác.
Khi đó $H$ là trung điểm của $PQ$
$\Rightarrow PH=\frac{PQ}{2}=\frac{1}{\sqrt{2}}R$
$\sin \widehat{POH}=\frac{PH}{PO}=\frac{1}{\sqrt{2}}R:R=\frac{1}{\sqrt{2}}$
$\Rightarrow \widehat{POH}=45^0$
$\Rightarrow \widehat{POQ}=2\widehat{POH}=90^0$
Số đo cung $PQ$ là $90^0$