Những câu hỏi liên quan
PB
Xem chi tiết
CT
9 tháng 9 2019 lúc 5:00

Đáp án D

Ta có log25000 = log25 + log1002log5 + 3 = 2a + 3

Bình luận (0)
NQ
Xem chi tiết
AH
12 tháng 11 2018 lúc 19:58

Bài 1:

\(A=\log_380=\log_3(2^4.5)=\log_3(2^4)+\log_3(5)\)

\(=4\log_32+\log_35=4a+b\)

\(B=\log_3(37,5)=\log_3(2^{-1}.75)=\log_3(2^{-1}.3.5^2)\)

\(=\log_3(2^{-1})+\log_33+\log_3(5^2)=-\log_32+1+2\log_35\)

\(=-a+1+2b\)

Bình luận (0)
AH
12 tháng 11 2018 lúc 20:05

Bài 2:

\(\log_{30}8=\frac{\log 8}{\log 30}=\frac{\log (2^3)}{\log (10.3)}=\frac{3\log2}{\log 10+\log 3}\)

\(=\frac{3\log (\frac{10}{5})}{1+\log 3}=\frac{3(\log 10-\log 5)}{1+\log 3}=\frac{3(1-b)}{1+a}\)

Bình luận (0)
AH
13 tháng 11 2018 lúc 8:35

Bài 3:

\(\log_{27}5=a; \log_87=b; \log_23=c\)

\(\Leftrightarrow \frac{\ln 5}{\ln 27}=a; \frac{\ln 7}{\ln 8}=b; \frac{\ln 3}{\ln 2}=c\)

\(\Leftrightarrow \frac{\ln 5}{\ln (3^3)}=a; \frac{\ln 7}{\ln (2^3)}=b; \ln 3=c\ln 2\)

\(\Leftrightarrow \frac{\ln 5}{3\ln 3}=a; \frac{\ln 7}{3\ln 2}=b; \ln 3=c\ln 2\)

\(\Rightarrow \frac{\ln 5}{3c\ln 2}=a; \frac{\ln 7}{3\ln 2}=b\)

\(\Rightarrow \ln 35=\ln 5+\ln 7=3ac\ln 2+3b\ln 2\)

Do đó:
\(D=\log_6 35=\frac{\ln 35}{\ln 6}=\frac{\ln 35}{\ln 2+\ln 3}=\frac{\ln 35}{\ln 2+c\ln 2}=\frac{3ac\ln 2+3b\ln 2}{\ln 2+c\ln 2}\)

\(=\frac{3ac+3b}{1+c}\)

Bình luận (0)
SK
Xem chi tiết
BV
30 tháng 5 2017 lúc 9:44

a) \(\left(\dfrac{1}{9}\right)^{\dfrac{1}{2}log^4_3}=\left(3^{-2}\right)^{\dfrac{1}{2}log^4_3}=\left(3^{log^4_3}\right)^{-2.\dfrac{1}{2}}=4^{-1}=\dfrac{1}{4}\);
b) \(10^{3-log5}=\dfrac{10^3}{10^{log5}}=\dfrac{10^3}{5}=200\);
c) \(2log^{log1000}_{27}=2log^3_{3^3}=\dfrac{2}{3}log^3_3=\dfrac{2}{3}\);
d) \(3log_2^{log_4^{16}}+log^2_{\dfrac{1}{2}}=3log^2_2-log^2_2=3-1=2\).

Bình luận (0)
PB
Xem chi tiết
CT
2 tháng 6 2018 lúc 12:04

Bình luận (0)
MN
Xem chi tiết
NL
4 tháng 10 2021 lúc 23:02

Bài này e rằng quá khó để tự luận do vấn đề cơ số

Nhưng tinh ý 1 chút thì giải trắc nghiệm đơn giản:

\(\dfrac{\sqrt{x}}{2}-\dfrac{1}{2\sqrt{x}}=\dfrac{x-1}{2\sqrt{x}}\)

Để ý rằng \(x-1-2\sqrt{x}=x-\left(2\sqrt{x}+1\right)\)

Do đó pt luôn có nghiệm thỏa mãn: \(x-2\sqrt{x}-1=0\Rightarrow x=3+2\sqrt{2}\)

Bình luận (0)
BP
Xem chi tiết
NL
14 tháng 12 2018 lúc 15:04

\(log\left(5\left(x^2+1\right)\right)\ge log\left(mx^2+4x+m\right)\)

- BPT đúng \(\forall x\Rightarrow log\left(mx^2+4x+m\right)\) xác định \(\forall x\in R\)

\(\Rightarrow mx^2+4x+m>0\) \(\forall x\in R\)

\(\Rightarrow\left\{{}\begin{matrix}a=m>0\\\Delta'=4-m^2< 0\end{matrix}\right.\) \(\Rightarrow m>2\) (1)

- Lại có \(x^2+1\ge1\) \(\forall x\)

\(\Rightarrow5\left(x^2+1\right)\ge mx^2+4x+m\)

\(\Leftrightarrow5\left(x^2+1\right)-4x\ge m\left(x^2+1\right)\)

\(\Leftrightarrow5-\dfrac{4x}{x^2+1}\ge m\)

Đặt \(f\left(x\right)=5-\dfrac{4x}{x^2+1}\Rightarrow f\left(x\right)\ge m\) \(\forall x\Leftrightarrow m\le min\left(f\left(x\right)\right)\)

Ta có \(f\left(x\right)=3+2-\dfrac{4x}{x^2+1}=3+\dfrac{2\left(x-1\right)^2}{x^2+1}\ge3\)

\(\Rightarrow min\left(f\left(x\right)\right)=3\Rightarrow m\le3\) (2)

Kết hợp (1), (2) \(\Rightarrow2< m\le3\Rightarrow m=3\)

Vậy có 1 giá trị nguyên duy nhất của m để BPT đúng với mọi x

Đáp án B

Bình luận (0)
PB
Xem chi tiết
CT
13 tháng 7 2018 lúc 8:11

Đáp án A

Bình luận (0)
MT
Xem chi tiết
NT
13 tháng 3 2023 lúc 21:44

Chọn B

Bình luận (0)
NL
18 tháng 3 2023 lúc 10:53

\(=\left(log_{a^{-1}}a^2\right)^2+\dfrac{1}{2}.\dfrac{1}{2}log_aa\)

\(=\left(-1.2.log_aa\right)^2+\dfrac{1}{4}=4+\dfrac{1}{4}=\dfrac{17}{4}\)

Bình luận (0)
H24
Xem chi tiết
NT
15 tháng 8 2023 lúc 20:00

\(log_65=\dfrac{1}{log_56}=\dfrac{1}{log_52+log_53}=\dfrac{1}{a+b}\)

=>Chọn B

Bình luận (0)