\(P=log_{2x}x=\dfrac{1}{x}\cdot log_2x=\dfrac{1}{x}\cdot3=\dfrac{3}{x}\)
\(log_2x=3\Rightarrow log_x2=\dfrac{1}{3}\)
\(P=log_{2x}x=\dfrac{1}{log_x2x}=\dfrac{1}{log_x2+log_xx}=\dfrac{1}{\dfrac{1}{3}+1}=\dfrac{3}{4}\)
Câu 48/Đề 7: Có bao nhiêu giá trị nguyên của tham số m thuộc [-10;10] đêể bất phương trình log3(x2+x+1)+2x3 ≤ 3x2 + log3x +m-1 có ít nhất 2 nghiệm phân biệt
Có bao nhiêu giá trị nguyên của tham số m thuộc \(\left[-10;10\right]\) để phương trình: 23m.7\(x^2-2x\) + 73m.2\(x^2-2x\) =143m(7x2 -14x +2 -7.3m) có 4 nghiệm phân biệt trong đó có đúng hai nghiệm lớn hơn -1
Đề hình như hơi sai sai ở chỗ \(-7.3^m\) cuối cùng
Đúng như vầy thì chắc ko làm được đâu, \(-7.3m\) mới có cơ hội biến đổi
Xét \(I_1=\int\limits^{\dfrac{\pi}{2}}_0f\left(sinx\right)dx\)
Đặt \(x=\pi-t\Rightarrow dx=-dt\) ; \(sinx=sin\left(\pi-t\right)=sint\)
\(\left\{{}\begin{matrix}x=0\Rightarrow t=\pi\\x=\dfrac{\pi}{2}\Rightarrow t=\dfrac{\pi}{2}\end{matrix}\right.\)
\(\Rightarrow I_1=\int\limits^{\dfrac{\pi}{2}}_{\pi}f\left(sint\right).\left(-dt\right)=\int\limits^{\pi}_{\dfrac{\pi}{2}}f\left(sint\right)dt=\int\limits^{\pi}_{\dfrac{\pi}{2}}f\left(sinx\right)dx\)
\(\Rightarrow4042=2I_1=\int\limits^{\dfrac{\pi}{2}}_0f\left(sinx\right)dx+\int\limits^{\pi}_{\dfrac{\pi}{2}}f\left(sinx\right)dx=\int\limits^{\pi}_0f\left(sinx\right)dx\)
Xét \(I_2=\int\limits^{\pi}_0x.f\left(sinx\right)dx\)
Đặt \(x=\pi-t\Rightarrow dx=-dt;sinx=sint\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow t=\pi\\x=\pi\Rightarrow t=0\end{matrix}\right.\)
\(I_2=\int\limits^0_{\pi}\left(\pi-t\right)f\left(sint\right)\left(-dt\right)=\int\limits^{\pi}_0\left(\pi-t\right)f\left(sint\right)dt=\int\limits^{\pi}_0\left(\pi-x\right)f\left(sinx\right)dx\)
\(=\pi\int\limits^{\pi}_0f\left(sinx\right)dx-\int\limits^{\pi}_0x.f\left(sinx\right)dx=4042\pi-I_2\)
\(\Rightarrow2I_2=4042\pi\Rightarrow I_2=2021\pi\)
Có bao nhiêu giá trị nguyên dương của y để tồn tại số thực x >1 thỏa mãn phương trình: (x2y - 8x + y - 3).log9y = log3\(\dfrac{\sqrt{8x-y+4}}{x}\)
\(\left(x^2y-8x+y-4\right)log_3y=2log_3\dfrac{\sqrt{8x-y+4}}{x}-log_3y=log_3\dfrac{8x-y+4}{x^2y}\)
\(\Rightarrow log_3\left(x^2y\right)+x^2y.log_3y=log_3\left(8x-y+4\right)+\left(8x-y+4\right)log_3y\)
Xét hàm \(f\left(t\right)=log_3t+t.log_3y\Rightarrow f'\left(t\right)=\dfrac{1}{1.ln3}+log_3y>0\)
\(\Rightarrow x^2y=8x-y+4\)
\(\Rightarrow y=\dfrac{8x+4}{x^2+1}\)
Tìm y để pt trên có nghiệm lớn hơn 1, lập BBT \(\Rightarrow y< 6\)
Gọi S là tập hợp tất cả các giá trị của tham số m ∈ Z và phương trình:
logmx-5.x2 - 6x + 12= log\(\sqrt{mx-5}\) \(\sqrt{x+2}\) có nghiệm duy nhất. Tính số phần tử của S
ĐKXĐ: \(mx-5>0\) ; \(x>-2\)
\(log_{mx-5}\left(x^2-6x+12\right)=log_{mx-5}\left(x+2\right)\)
\(\Rightarrow x^2-6x+12=x+2\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)
TH1: \(x=2\) là nghiệm duy nhất \(\Rightarrow\left\{{}\begin{matrix}m.2-5>0\\m.5-5< 0\end{matrix}\right.\) \(\Rightarrow\) ktm
TH2: \(x=5\) là nghiệm duy nhất \(\Rightarrow\left\{{}\begin{matrix}m.2-5< 0\\m.5-5>0\end{matrix}\right.\)
\(\Rightarrow1< m< \dfrac{5}{2}\Rightarrow m=2\)
1.Tập xác định của hàm số y= ( x2-1)2/3 là
2.hệ số góc của tiếp tuyến tại A (1;0) của đồ thị hàm số y = -x3+3x -1
3.tìm tập xác định của hàm số y= log2021(x-1)
4.bất pt 2x-1<5 có tập nghiệm là
Mong mn chỉ giúp ♡
Tập xác định của hàm số \(y=\left(3^x-9\right)^{-2}\) là:
A. \(D=R\)
B. \(D=R\backslash\left\{2\right\}\)
C. \(D=\left(-\infty;2\right)\)
D. \(D=\left(2;+\infty\right)\)
Lời giải:
ĐKXĐ: $3^x-9\neq 0\Lefrightarrow 3^x\neq 9\Leftrightarrow x\neq 2$
Đáp án B.
Ai giúp mình với mình cảm ơn
Ui anh/chị đang ôn thi ạ. Viết gãy tay
Giải giúp mình với
Cho biết phương trình: log5\(\dfrac{2\sqrt{x}+1}{x}=2log_3\left(\dfrac{\sqrt{x}}{2}-\dfrac{1}{2\sqrt{x}}\right)\) có nghiệm duy nhất x = a + b\(\sqrt{2}\) . Hỏi m = ? để hàm số y = \(\dfrac{mx+a-2}{x-m}\) có GTLN trên đoạn \(\left[1;2\right]\) bằng -2
Giống bài trước, \(x=3+2\sqrt{2}\) là nghiệm
\(\Rightarrow y=\dfrac{mx+1}{x-m}\Rightarrow y'=\dfrac{-m^2-1}{\left(x-m\right)^2}\) nghịch biến trên miền xác định
\(\Rightarrow\max\limits_{\left[1;2\right]}y=y\left(1\right)=\dfrac{m+1}{1-m}=-2\Rightarrow m\)