Bài 7: Ôn tập chương Hàm số lũy thừa, hàm số mũ và hàm số lôgarit

NT

\(P=log_{2x}x=\dfrac{1}{x}\cdot log_2x=\dfrac{1}{x}\cdot3=\dfrac{3}{x}\)

Bình luận (0)
NL
29 tháng 1 lúc 8:45

\(log_2x=3\Rightarrow log_x2=\dfrac{1}{3}\)

\(P=log_{2x}x=\dfrac{1}{log_x2x}=\dfrac{1}{log_x2+log_xx}=\dfrac{1}{\dfrac{1}{3}+1}=\dfrac{3}{4}\)

Bình luận (0)
TB
Xem chi tiết
MN
Xem chi tiết
NL
6 tháng 3 2022 lúc 22:41

Đề hình như hơi sai sai ở chỗ \(-7.3^m\) cuối cùng

Đúng như vầy thì chắc ko làm được đâu, \(-7.3m\) mới có cơ hội biến đổi

Bình luận (4)
NL
7 tháng 3 2022 lúc 0:24

Xét \(I_1=\int\limits^{\dfrac{\pi}{2}}_0f\left(sinx\right)dx\)

Đặt \(x=\pi-t\Rightarrow dx=-dt\) ; \(sinx=sin\left(\pi-t\right)=sint\)

\(\left\{{}\begin{matrix}x=0\Rightarrow t=\pi\\x=\dfrac{\pi}{2}\Rightarrow t=\dfrac{\pi}{2}\end{matrix}\right.\)

\(\Rightarrow I_1=\int\limits^{\dfrac{\pi}{2}}_{\pi}f\left(sint\right).\left(-dt\right)=\int\limits^{\pi}_{\dfrac{\pi}{2}}f\left(sint\right)dt=\int\limits^{\pi}_{\dfrac{\pi}{2}}f\left(sinx\right)dx\)

\(\Rightarrow4042=2I_1=\int\limits^{\dfrac{\pi}{2}}_0f\left(sinx\right)dx+\int\limits^{\pi}_{\dfrac{\pi}{2}}f\left(sinx\right)dx=\int\limits^{\pi}_0f\left(sinx\right)dx\)

Xét \(I_2=\int\limits^{\pi}_0x.f\left(sinx\right)dx\)

Đặt \(x=\pi-t\Rightarrow dx=-dt;sinx=sint\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow t=\pi\\x=\pi\Rightarrow t=0\end{matrix}\right.\)

\(I_2=\int\limits^0_{\pi}\left(\pi-t\right)f\left(sint\right)\left(-dt\right)=\int\limits^{\pi}_0\left(\pi-t\right)f\left(sint\right)dt=\int\limits^{\pi}_0\left(\pi-x\right)f\left(sinx\right)dx\)

\(=\pi\int\limits^{\pi}_0f\left(sinx\right)dx-\int\limits^{\pi}_0x.f\left(sinx\right)dx=4042\pi-I_2\)

\(\Rightarrow2I_2=4042\pi\Rightarrow I_2=2021\pi\)

Bình luận (0)
MN
Xem chi tiết
NL
10 tháng 1 2022 lúc 21:17

\(\left(x^2y-8x+y-4\right)log_3y=2log_3\dfrac{\sqrt{8x-y+4}}{x}-log_3y=log_3\dfrac{8x-y+4}{x^2y}\)

\(\Rightarrow log_3\left(x^2y\right)+x^2y.log_3y=log_3\left(8x-y+4\right)+\left(8x-y+4\right)log_3y\)

Xét hàm \(f\left(t\right)=log_3t+t.log_3y\Rightarrow f'\left(t\right)=\dfrac{1}{1.ln3}+log_3y>0\)

\(\Rightarrow x^2y=8x-y+4\)

\(\Rightarrow y=\dfrac{8x+4}{x^2+1}\)

Tìm y để pt trên có nghiệm lớn hơn 1, lập BBT \(\Rightarrow y< 6\)

Bình luận (0)
MN
Xem chi tiết
NL
4 tháng 1 2022 lúc 22:44

ĐKXĐ: \(mx-5>0\) ; \(x>-2\)

\(log_{mx-5}\left(x^2-6x+12\right)=log_{mx-5}\left(x+2\right)\)

\(\Rightarrow x^2-6x+12=x+2\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)

TH1: \(x=2\) là nghiệm duy nhất \(\Rightarrow\left\{{}\begin{matrix}m.2-5>0\\m.5-5< 0\end{matrix}\right.\) \(\Rightarrow\) ktm

TH2: \(x=5\) là nghiệm duy nhất \(\Rightarrow\left\{{}\begin{matrix}m.2-5< 0\\m.5-5>0\end{matrix}\right.\)

\(\Rightarrow1< m< \dfrac{5}{2}\Rightarrow m=2\)

Bình luận (1)
MN
4 tháng 1 2022 lúc 22:44

undefined

Bình luận (1)
NT
Xem chi tiết
TT
Xem chi tiết
DH
21 tháng 12 2021 lúc 22:18

B

Bình luận (1)
AH
21 tháng 12 2021 lúc 22:32

Lời giải:
ĐKXĐ: $3^x-9\neq 0\Lefrightarrow 3^x\neq 9\Leftrightarrow x\neq 2$

Đáp án B. 

Bình luận (4)
PT
22 tháng 12 2021 lúc 8:02

B

Bình luận (0)
TB
11 tháng 12 2021 lúc 0:29

Ui anh/chị đang ôn thi ạ. Viết gãy tay

Bình luận (0)
NT
11 tháng 12 2021 lúc 7:35

Chọn B

Bình luận (0)
MN
Xem chi tiết
NL
4 tháng 10 2021 lúc 23:06

Giống bài trước, \(x=3+2\sqrt{2}\) là nghiệm

\(\Rightarrow y=\dfrac{mx+1}{x-m}\Rightarrow y'=\dfrac{-m^2-1}{\left(x-m\right)^2}\) nghịch biến trên miền xác định

\(\Rightarrow\max\limits_{\left[1;2\right]}y=y\left(1\right)=\dfrac{m+1}{1-m}=-2\Rightarrow m\)

Bình luận (0)