Cho \(\log_ax=p,\log_bx=q,\log_{abc}x=r\) . Tính \(\log_cx\) theo \(p,q,r\)
Cho \(\log_ax=p,\log_bx=q,\log_{abc}x=r\) . Tính \(\log_cx\) theo \(p,q,r\)
\(log_xa=\dfrac{1}{p};log_xb=\dfrac{1}{q}\)
\(log_xabc=\dfrac{1}{r}\Rightarrow log_xa+log_xb+log_xc=\dfrac{1}{r}\)
\(\Rightarrow\dfrac{1}{p}+\dfrac{1}{q}+\dfrac{1}{log_cx}=\dfrac{1}{r}\)
\(\Rightarrow\dfrac{1}{log_cx}=\dfrac{1}{r}-\dfrac{1}{p}-\dfrac{1}{q}=\dfrac{pq-pr-qr}{pqr}\)
\(\Rightarrow log_cx=\dfrac{pqr}{pq-pr-qr}\)
Phương trình 3×2^x -4^x-2=0 có 2 nghiệm x1,x2.Tính tổng x1+x2
Đặt \(t=2^x\)
Phương trình sẽ trở thành:
\(-t^2+3t-2=0\)
=>\(\left(t^2-3t+2\right)=0\)
=>\(\left(t-1\right)\left(t-2\right)=0\)
=>\(\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2^x=1\\2^x=2\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
\(x_1+x_2=0+1=1\)
4. Tính đạo hàm của các hàm số sau:
a) \(y = (3x^2-4x+1)^{-4}\)
b) \(y = 3^{x^2-1} + e^{-x+1}\)
c) \(y = \ln (x^2-4x) + \log_{3} (2x-1)\)
d) \(y =x . \ln x + 2^{\frac{x-1}{x+1}}\)
e) \(y = x^{-7} - \ln (x^2-1)\)
`a)TXĐ:R\\{1;1/3}`
`y'=[-4(6x-4)]/[(3x^2-4x+1)^5]`
`b)TXĐ:R`
`y'=2x. 3^[x^2-1] ln 3-e^[-x+1]`
`c)TXĐ: (4;+oo)`
`y'=[2x-4]/[x^2-4x]+2/[(2x-1).ln 3]`
`d)TXĐ:(0;+oo)`
`y'=ln x+2/[(x+1)^2].2^[[x-1]/[x+1]].ln 2`
`e)TXĐ:(-oo;-1)uu(1;+oo)`
`y'=-7x^[-8]-[2x]/[x^2-1]`
Lời giải:
a.
$y'=-4(3x^2-4x+1)^{-5}(3x^2-4x+1)'$
$=-4(3x^2-4x+1)^{-5}(6x-4)$
$=-8(3x-2)(3x^2-4x+1)^{-5}$
b.
$y'=(3^{x^2-1})'+(e^{-x+1})'$
$=(x^2-1)'3^{x^2-1}\ln 3 + (-x+1)'e^{-x+1}$
$=2x.3^{x^2-1}.\ln 3 -e^{-x+1}$
c.
$y'=\frac{(x^2-4x)'}{x^2-4x}+\frac{(2x-1)'}{(2x-1)\ln 3}$
$=\frac{2x-4}{x^2-4x}+\frac{2}{(2x-1)\ln 3}$
d.
\(y'=(x\ln x)'+(2^{\frac{x-1}{x+1}})'=x(\ln x)'+x'\ln x+(\frac{x-1}{x+1})'.2^{\frac{x-1}{x+1}}\ln 2\)
\(=x.\frac{1}{x}+\ln x+\frac{2}{(x+1)^2}.2^{\frac{x-1}{x+1}}\ln 2\\ =1+\ln x+\frac{2^{\frac{2x}{x+1}}\ln 2}{(x+1)^2}\)
e.
\(y'=-7x^{-8}-\frac{(x^2-1)'}{x^2-1}=-7x^{-8}-\frac{2x}{x^2-1}\)
3. Tìm tập xác định của các hàm số sau:
a) \(y = 2^{x^2-1}\)
b) \(y = x^{-4}\)
c) \(y = (x-1)^{-3}\)
d) \(y = (x^2-1)^{4\pi}\)
e) \(y = \ln (4x^2-1)\)
f) \(y = \log_{3} (x^2-2)\)
h) \(y = (2x^2-4x)^{\frac{-1}{3}}\)
k) \(y = (2x-1)^{-4}\)
l) \(y = \log_{3} (x^2-1) + \ln (x-2) + e^{\frac{x}{x-1}}\)
`a)TXĐ: R`
`b)TXĐ: R\\{0}`
`c)TXĐ: R\\{1}`
`d)TXĐ: (-oo;-1)uu(1;+oo)`
`e)TXĐ: (-oo;-1/2)uu(1/2;+oo)`
`f)TXĐ: (-oo;-\sqrt{2})uu(\sqrt{2};+oo)`
`h)TXĐ: (-oo;0) uu(2;+oo)`
`k)TXĐ: R\\{1/2}`
`l)ĐK: {(x^2-1 > 0),(x-2 > 0),(x-1 ne 0):}`
`<=>{([(x > 1),(x < -1):}),(x > 2),(x ne 1):}`
`<=>x > 2`
`=>TXĐ: (2;+oo)`
Với các số thực dương xyz đôi một khác nhau thỏa xyz=1 và x,y,z khác 1 tìm minP=logx\(\dfrac{y}{z}\)+logy\(\dfrac{z}{x}\)+logz\(\dfrac{x}{y}\)+2(log\(\dfrac{y}{z}\)(x)+log\(\dfrac{z}{x}\)(y)+log\(\dfrac{x}{y}\)(z))
Cho F(X) là một nguyên hàm f(x) trên R. Biết F (1) = 1 và \(\int_1^2\)f(x) = 5. Tính F(2)
\(\int\limits^2_1f\left(x\right)=5\Rightarrow F\left(2\right)-F\left(1\right)=5\)
\(\Rightarrow F\left(2\right)=5+F\left(1\right)=5+1=6\)
Có bao nhiêu số nguyên y sao cho tồn tại x∈ (\(\dfrac{1}{2}\) ;8) thỏa mãn 92\(x^2\)+xy= (1+xy).915x
\(I=\int\limits^{-1}_{-2}\dfrac{6a}{e^x}dx-\int\limits^{-1}_{-2}\dfrac{f\left(x\right)}{e^x}dx=J-I_1\)
Xét \(I_1\) , đặt \(\left\{{}\begin{matrix}u=f\left(x\right)\\dv=e^{-x}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=f'\left(x\right)dx\\v=-e^{-x}\end{matrix}\right.\)
\(\Rightarrow I_1=-f\left(x\right).e^{-x}|^{-1}_{-2}+\int\limits^{-1}_{-2}\dfrac{f'\left(x\right)}{e^x}dx=-f\left(-1\right).e+f\left(-2\right).e^2+I_2\)
Xét \(I_2\) , đặt \(\left\{{}\begin{matrix}u=f'\left(x\right)\\dv=e^{-x}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=f''\left(x\right)dx\\v=-e^{-x}\end{matrix}\right.\)
\(\Rightarrow I_2=-f'\left(x\right).e^{-x}|^{-1}_{-2}+\int\limits^{-1}_{-2}\dfrac{f''\left(x\right)}{e^x}dx=-f'\left(-1\right).e+f'\left(-2\right).e^2+I_3\)
Xét \(I_3\) , đặt \(\left\{{}\begin{matrix}u=f''\left(x\right)\\dv=e^{-x}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=f'''\left(x\right)dx=6a.dx\\v=-e^{-x}\end{matrix}\right.\)
\(\Rightarrow I_3=-f''\left(x\right).e^{-x}|^{-1}_{-2}+\int\limits^{-1}_{-2}\dfrac{6a}{e^x}dx=-f''\left(-1\right).e+f''\left(-2\right).e^2+J\)
Do đó:
\(I=J+f\left(-1\right).e-f\left(-2\right).e^2+f'\left(-1\right).e-f'\left(-2\right).e^2+f''\left(-1\right).e-f''\left(-2\right).e^2-J\)
\(=e\left[f\left(-1\right)+f'\left(-1\right)+f''\left(-1\right)\right]-e^2\left[f\left(-2\right)+f'\left(-2\right)+f''\left(-2\right)\right]\)
\(=e.g\left(-1\right)-e^2.g\left(-2\right)=e+e^2=e\left(e+1\right)\)
1+1+2+2+3+3+.............n+n+n+1+n+1=????
y=log2(x3-3x2+m). Tìm m để hàm số xác định trên (1;3)
\(\Leftrightarrow x^3-3x^2+m>0\) ; \(\forall x\in\left(1;3\right)\)
\(\Leftrightarrow x^3-3x^2>-m\) ; \(\forall x\in\left(1;3\right)\)
Xét hàm \(f\left(x\right)=x^3-3x^2\) trên \(\left(1;3\right)\)
\(f'\left(x\right)=3x^2-6x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
\(\Rightarrow\min\limits_{\left(1;3\right)}f\left(x\right)=f\left(2\right)=-4\)
\(\Rightarrow m< -4\)
\(^{y=e^{\dfrac{2x+m}{x-1}}}\). tìm m để Max y=e5 trên \(\left[2;4\right]\)
\(y'=\dfrac{-2-m}{\left(x-1\right)^2}.e^{\dfrac{2x+m}{x-1}}\)
\(\Rightarrow\) Hàm đơn điệu trên miền xác định
TH1: \(\left\{{}\begin{matrix}-2-m< 0\\y\left(2\right)=e^5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>-2\\\dfrac{m+4}{1}=5\end{matrix}\right.\) \(\Rightarrow m=1\)
TH2: \(\left\{{}\begin{matrix}-2-m>0\\y\left(4\right)=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< -2\\\dfrac{m+8}{3}=5\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn
Vậy \(m=1\)