Những câu hỏi liên quan
LH
Xem chi tiết
TN
23 tháng 3 2020 lúc 16:31
https://i.imgur.com/q2TMREU.jpg
Bình luận (0)
 Khách vãng lai đã xóa
QD
13 tháng 1 2020 lúc 16:43

bạn lập bảng xét dấu nhé

Bình luận (0)
 Khách vãng lai đã xóa
TL
Xem chi tiết
NH
Xem chi tiết
NM
Xem chi tiết
NL
5 tháng 3 2020 lúc 17:29

ĐKXĐ: \(\left[{}\begin{matrix}x>3\\x\le-1\end{matrix}\right.\)

- Với \(x>3\) BPT tương đương:

\(\left(x-3\right)\left(x+1\right)+2\sqrt{\left(x-3\right)\left(x+1\right)}-3< 0\)

\(\Leftrightarrow\left(\sqrt{\left(x-3\right)\left(x+1\right)}-1\right)\left(\sqrt{\left(x-3\right)\left(x+1\right)}+3\right)< 0\)

\(\Leftrightarrow\left(x-3\right)\left(x+1\right)< 1\)

\(\Leftrightarrow x^2-2x-4< 0\Rightarrow3< x< 1+\sqrt{5}\)

- Với \(x\le-1\)

\(\Leftrightarrow\left(x-3\right)\left(x+1\right)-2\sqrt{\left(x-3\right)\left(x+1\right)}< 3\)

\(\Leftrightarrow\left(\sqrt{\left(x-3\right)\left(x+1\right)}+1\right)\left(\sqrt{\left(x-3\right)\left(x+1\right)}-3\right)< 0\)

\(\Leftrightarrow\left(x-3\right)\left(x+1\right)< 9\Leftrightarrow x^2-2x-12< 0\)

\(\Rightarrow1-\sqrt{13}< x\le-1\)

Vậy nghiệm của BPT là: \(\left[{}\begin{matrix}3< x< 1+\sqrt{5}\\1-\sqrt{13}< x\le-1\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa
TP
Xem chi tiết
NH
Xem chi tiết
NL
18 tháng 2 2020 lúc 18:27

ĐKXĐ: \(x\ge2\)

Khi đó ta có \(x^2-x+1\ge3\Rightarrow1-2\sqrt{x^2-x+1}< 0\)

Do đó BPT tương đương:

\(\sqrt{2\left(x^2+7x+3\right)}-\sqrt{x^2+x-6}-3\sqrt{x+1}\le0\)

\(\Leftrightarrow\sqrt{2x^2+14x+6}\le\sqrt{x^2+x-6}+3\sqrt{x+1}\)

\(\Leftrightarrow2x^2+14x+6\le x^2+10x+3+6\sqrt{\left(x+1\right)\left(x^2+x-6\right)}\)

\(\Leftrightarrow x^2+4x+3\le6\sqrt{\left(x+1\right)\left(x+3\right)\left(x-2\right)}\)

\(\Leftrightarrow\left(x+1\right)\left(x+3\right)\le6\sqrt{\left(x+1\right)\left(x+3\right)\left(x-2\right)}\)

\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x+3\right)}\le6\sqrt{x-2}\)

\(\Leftrightarrow\left(x+1\right)\left(x+3\right)\le36\left(x-2\right)\)

\(\Leftrightarrow x^2-32x+75\le0\)

\(\Rightarrow16-\sqrt{181}\le x\le16+\sqrt{181}\)

Bình luận (0)
 Khách vãng lai đã xóa
DV
Xem chi tiết
H24
4 tháng 3 2022 lúc 21:32

\(a,\left(x-1\right)^2+x^2\le\left(x+1\right)^2+\left(x+2\right)^2\\ \Leftrightarrow x^2-2x+1+x^2\le x^2+2x+1+x^2+4x+4\\ \Leftrightarrow2x^2-2x+1\le2x^2+6x+5\\ \Leftrightarrow-8x-6\le0\\ \Leftrightarrow x\ge\dfrac{3}{4}\)

\(b,\left(x^2+1\right)\left(x-6\right)\le\left(x-2\right)^3\\ \Leftrightarrow x^3+x-6x^2-6\le x^3-6x^2+12x-8\\ \Leftrightarrow11x-2\ge0\\ \Leftrightarrow x\ge\dfrac{2}{11}\)

Bình luận (0)
NT
4 tháng 3 2022 lúc 21:32

a: \(\Leftrightarrow x^2-2x+1+x^2< =x^2+2x+1+x^2+4x+4\)

=>-2x+1<=6x+5

=>-7x<=4

hay x>=-4/7

b: \(\Leftrightarrow x^3-6x^2+x-6-x^3+6x^2-12x+8< =0\)

=>-11x+2<=0

=>-11x<=-2

hay x>=2/11

Bình luận (0)
NT
Xem chi tiết
BB
Xem chi tiết