Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

NH

giải bpt :

\(\frac{\sqrt{2\left(x^2+7x+3\right)}-\sqrt{x^2+x-6}-3\sqrt{x+1}}{1-2\sqrt{x^2-x+1}}\ge0\)

NL
18 tháng 2 2020 lúc 18:27

ĐKXĐ: \(x\ge2\)

Khi đó ta có \(x^2-x+1\ge3\Rightarrow1-2\sqrt{x^2-x+1}< 0\)

Do đó BPT tương đương:

\(\sqrt{2\left(x^2+7x+3\right)}-\sqrt{x^2+x-6}-3\sqrt{x+1}\le0\)

\(\Leftrightarrow\sqrt{2x^2+14x+6}\le\sqrt{x^2+x-6}+3\sqrt{x+1}\)

\(\Leftrightarrow2x^2+14x+6\le x^2+10x+3+6\sqrt{\left(x+1\right)\left(x^2+x-6\right)}\)

\(\Leftrightarrow x^2+4x+3\le6\sqrt{\left(x+1\right)\left(x+3\right)\left(x-2\right)}\)

\(\Leftrightarrow\left(x+1\right)\left(x+3\right)\le6\sqrt{\left(x+1\right)\left(x+3\right)\left(x-2\right)}\)

\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x+3\right)}\le6\sqrt{x-2}\)

\(\Leftrightarrow\left(x+1\right)\left(x+3\right)\le36\left(x-2\right)\)

\(\Leftrightarrow x^2-32x+75\le0\)

\(\Rightarrow16-\sqrt{181}\le x\le16+\sqrt{181}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NH
Xem chi tiết
JE
Xem chi tiết
JE
Xem chi tiết
JE
Xem chi tiết
JE
Xem chi tiết
DV
Xem chi tiết
TH
Xem chi tiết
VP
Xem chi tiết
PA
Xem chi tiết