Những câu hỏi liên quan
TT
Xem chi tiết
TT
Xem chi tiết
NT
21 tháng 8 2023 lúc 3:05

a:

ĐKXĐ: x+1>0 và x>0

=>x>0

=>\(log_2\left(x^2+x\right)=1\)

=>x^2+x=2

=>x^2+x-2=0

=>(x+2)(x-1)=0

=>x=1(nhận) hoặc x=-2(loại)

c: ĐKXĐ: x-1>0 và x-2>0

=>x>2

\(PT\Leftrightarrow log_2\left(x^2-3x+2\right)=3\)

=>\(\Leftrightarrow x^2-3x+2=8\)

=>x^2-3x-6=0

=>\(\left[{}\begin{matrix}x=\dfrac{3+\sqrt{33}}{2}\left(nhận\right)\\x=\dfrac{3-\sqrt{33}}{2}\left(loại\right)\end{matrix}\right.\)

Bình luận (0)
TA
Xem chi tiết
NH
24 tháng 3 2016 lúc 12:53

Điều kiện x>1

Từ (1) ta có  \(\log_{\sqrt{3}}\frac{x+1}{x-1}>\log_34\) \(\Leftrightarrow\frac{x+1}{x-1}>2\) \(\Leftrightarrow\) 1<x<3

Đặt \(t=\log_2\left(x^2-2x+5\right)\)

Tìm điều kiện của t :

- Xét hàm số \(f\left(x\right)=\log_2\left(x^2-2x+5\right)\) với mọi x thuộc (1;3)

- Đạo hàm : \(f\left(x\right)=\frac{2x-2}{\ln2\left(x^2-2x+5\right)}>\) mọi \(x\in\left(1,3\right)\)

Hàm số đồng biến nên ta có \(f\left(1\right)\) <\(f\left(x\right)\) <\(f\left(3\right)\) \(\Leftrightarrow\)2<2<3

- Ta có \(x^2-2x+5=2'\)

 \(\Leftrightarrow\) \(\left(x-1\right)^2=2'-4\)

Suy ra ứng với mõi giá trị \(t\in\left(2,3\right)\) ta luôn có 1 giá trị \(x\in\left(1,3\right)\)

Lúc đó (2) suy ra : \(t-\frac{m}{t}=5\Leftrightarrow t^2-5t=m\)

Xét hàm số : \(f\left(t\right)=t^2-5t\) với mọi \(t\in\left(2,3\right)\)

- Đạo hàm : \(f'\left(t\right)=2t-5=0\Leftrightarrow t=\frac{5}{2}\)

- Bảng biến thiên :

x2                                              \(\frac{5}{2}\)                                                    3
y'                  +                             0                       -
y

-6                                                                                                      -6

                                                -\(\frac{25}{4}\)

 

Bình luận (0)
NH
24 tháng 3 2016 lúc 12:55

Để hệ có 2 cặp nghiệm phân biệt \(\Leftrightarrow-6>-m>-\frac{25}{4}\)\(\Leftrightarrow\)\(\frac{25}{4}\) <m<6

Bình luận (0)
H24
Xem chi tiết
HV
Xem chi tiết
NL
9 tháng 9 2020 lúc 22:49

ĐKXĐ: \(\left\{{}\begin{matrix}x^2-4x+3>0\\log_{\frac{9}{16}}\left(x^2-4x+3\right)>0\end{matrix}\right.\)

\(\Rightarrow0< x^2-4x+3< 1\) \(\Rightarrow\left[{}\begin{matrix}2-\sqrt{2}< x< 1\\3< x< 2+\sqrt{2}\end{matrix}\right.\)

Khi đó:

\(\Leftrightarrow log_{\frac{9}{16}}\left(x^2-4x+3\right)\le1\)

\(\Leftrightarrow x^2-4x+3\ge\frac{9}{16}\)

\(\Leftrightarrow x^2-4x+\frac{39}{16}\ge0\Rightarrow\left[{}\begin{matrix}x\ge\frac{13}{4}\\x\le\frac{3}{4}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2-\sqrt{2}< x\le\frac{3}{4}\\\frac{13}{4}\le x< 2+\sqrt{2}\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
NL
13 tháng 1 2024 lúc 20:05

ĐKXĐ:

a.

\(2x^2+4x>0\Leftrightarrow\left[{}\begin{matrix}x>0\\x< -2\end{matrix}\right.\)

b.

\(x^2-4>0\Rightarrow\left[{}\begin{matrix}x>2\\x< -2\end{matrix}\right.\)

c.

\(x^2+3x-4>0\Rightarrow\left[{}\begin{matrix}x>1\\x< -4\end{matrix}\right.\)

d.

\(\left(x-4\right)\left(x+2\right)>0\Rightarrow\left[{}\begin{matrix}x>4\\x< -2\end{matrix}\right.\)

e.

\(\left(x^2-4\right)\left(x+9\right)>0\Rightarrow\left[{}\begin{matrix}-9< x< -2\\x>2\end{matrix}\right.\)

Bình luận (0)
LP
Xem chi tiết
H24
Xem chi tiết
NT
12 tháng 1 2024 lúc 21:20

a: ĐKXĐ: 2x+6>0

=>2x>-6

=>x>-2

b: ĐKXĐ: x-6>0

=>x>6

c: ĐKXĐ: \(\left\{{}\begin{matrix}\dfrac{1}{2-x}>0\\2-x\ne0\end{matrix}\right.\)

=>2-x>0

=>x<2

d: ĐKXĐ: \(\left(x-6\right)\left(x+2\right)>0\)

=>\(\left[{}\begin{matrix}x-6>0\\x+2< 0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x>6\\x< -2\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết