Những câu hỏi liên quan
PA
Xem chi tiết
TL
4 tháng 8 2016 lúc 14:13

a)\(\left(\sqrt{21}+7\right)\cdot\sqrt{10-2\sqrt{21}}\)

\(=\left(\sqrt{21}+7\right)\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)

\(=\sqrt{7}\left(\sqrt{3}+\sqrt{7}\right)\left(\sqrt{7}-\sqrt{3}\right)\)

\(=\sqrt{7}\left(7-3\right)=4\sqrt{7}\)

b)\(\left(7+\sqrt{14}\right)\sqrt{9-2\sqrt{14}}\)

\(=\left(7+\sqrt{14}\right)\sqrt{\left(\sqrt{7}-\sqrt{2}\right)^2}\)

\(=\sqrt{7}\left(\sqrt{7}+\sqrt{2}\right)\left(\sqrt{7}-\sqrt{2}\right)\)

\(=\sqrt{7}\left(7-2\right)=5\sqrt{7}\)

 

Bình luận (1)
HG
Xem chi tiết
H24
15 tháng 8 2019 lúc 9:58

\(\left(4-\sqrt{7}\right)\left(\sqrt{14}+\sqrt{2}\right)\left(\sqrt{4+\sqrt{7}}\right)\)

\(=\left(4-\sqrt{7}\right)\left(\sqrt{7}+1\right)\left(\sqrt{8+2\sqrt{7}}\right)\)

\(=\left(4-\sqrt{7}\right)\left(\sqrt{7}+1\right)\left(\sqrt{\left(\sqrt{7}+1\right)^2}\right)\)

\(=\left(4-\sqrt{7}\right)\left(\sqrt{7}+1\right)^2\)

\(=\left(4-\sqrt{7}\right)\left(8+2\sqrt{7}\right)\)

\(=2\left(4-\sqrt{7}\right)\left(4+\sqrt{7}\right)\)

\(=2\left(16-7\right)=2.9=18\)

Vậy : \(\left(4-\sqrt{7}\right)\left(\sqrt{14}+\sqrt{2}\right)\left(\sqrt{4+\sqrt{7}}\right)=18\)

Bình luận (0)
TN
Xem chi tiết
AV
Xem chi tiết
NU
15 tháng 8 2019 lúc 11:18

1. Đặt A =\(\sqrt{\frac{129}{16}+\sqrt{2}}\)

\(\sqrt{16}\)A = \(\sqrt{129+16\sqrt{2}}\)

4A = \(\sqrt{\left(8\sqrt{2}+1\right)^2}\)

4A = \(8\sqrt{2}+1\)

⇒ A = \(\frac{\text{​​}8\sqrt{2}+1}{4}\)= \(2\sqrt{2}\) + \(\frac{1}{4}\)

2. Đặt B = \(\sqrt{\frac{289+4\sqrt{72}}{16}}\)

\(\sqrt{16}\)B = \(\sqrt{289+24\sqrt{2}}\)

4B = \(\sqrt{\left(12\sqrt{2}+1\right)^2}\)

4B = \(12\sqrt{2}+1\)

⇒ B = \(\frac{12\sqrt{2}+1}{4}\)= \(3\sqrt{2}+\frac{1}{4}\)

3. \(\sqrt{2-\sqrt{3}}\). \(\left(\sqrt{6}+\sqrt{2}\right)\)

= \(\sqrt{2-\sqrt{3}}\). \(\sqrt{2}.\left(\sqrt{3}+1\right)\)

= \(\sqrt{4-2\sqrt{3}}\) . \(\left(\sqrt{3}+1\right)\)

= \(\sqrt{\left(\sqrt{3}-1\right)^2}\) . \(\left(\sqrt{3}+1\right)\)

= \(\left(\sqrt{3}-1\right)\). \(\left(\sqrt{3}+1\right)\)

= \(\left(\sqrt{3}\right)^2\) - 12

= 3 - 1

= 2

4. \(\left(\sqrt{21}+7\right)\). \(\sqrt{10-2\sqrt{21}}\)

= \(\left(\sqrt{21}+7\right)\) . \(\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)

= \(\sqrt{7}\left(\sqrt{3}+\sqrt{7}\right)\) . \(\left(\sqrt{7}-\sqrt{3}\right)\)

= \(\sqrt{7}\) \(\left[\left(\sqrt{7}\right)^2-\left(\sqrt{3}\right)^2\right]\)

= \(\sqrt{7}\) . (7 - 3)

= 4\(\sqrt{7}\)

5. \(2.\left(\sqrt{10}-\sqrt{2}\right)\). \(\sqrt{4+\sqrt{6-2\sqrt{5}}}\)

= \(2.\left(\sqrt{10}-\sqrt{2}\right)\) . \(\sqrt{4+\sqrt{5}-1}\)

= \(2.\left(\sqrt{10}-\sqrt{2}\right)\) . \(\sqrt{3+\sqrt{5}}\)

= \(\left(\sqrt{10}-\sqrt{2}\right)\) . \(\sqrt{12+4\sqrt{5}}\)

= \(\left(\sqrt{10}-\sqrt{2}\right)\) . \(\left(\sqrt{10}+\sqrt{2}\right)\)

= \(\left(\sqrt{10}\right)^2-\left(\sqrt{2}\right)^2\)

= 10 - 2

= 8

6. \(\left(4\sqrt{2}+\sqrt{30}\right)\). \(\left(\sqrt{5}-\sqrt{3}\right)\). \(\sqrt{4-\sqrt{15}}\)

= \(\sqrt{2}\)\(\left(4+\sqrt{15}\right)\) . \(\left(\sqrt{5}-\sqrt{3}\right)\) . \(\sqrt{4-\sqrt{15}}\)

= \(\left(4+\sqrt{15}\right)\) . \(\left(\sqrt{5}-\sqrt{3}\right)\) . \(\sqrt{8-2\sqrt{15}}\)

= \(\left(4+\sqrt{15}\right)\) . \(\left(\sqrt{5}-\sqrt{3}\right)\) . \(\left(\sqrt{5}-\sqrt{3}\right)\)

= \(\left(4+\sqrt{15}\right)\) . \(\left(\sqrt{5}-\sqrt{3}\right)^2\)

= \(\left(4+\sqrt{15}\right)\). \(\left(8-2\sqrt{15}\right)\)

= 32 - \(8\sqrt{15}\) + \(8\sqrt{15}\) - 30

= 2

7. \(\left(7-\sqrt{14}\right)\) . \(\sqrt{9-2\sqrt{14}}\)

= \(\sqrt{7}\) \(\left(\sqrt{7}-\sqrt{2}\right)\). \(\left(\sqrt{7}-\sqrt{2}\right)\)

= \(\sqrt{7}\). \(\left(\sqrt{7}-\sqrt{2}\right)^2\)

= \(\sqrt{7}\) . \(\left(9-2\sqrt{14}\right)\)

= 9\(\sqrt{7}\) - 14\(\sqrt{2}\)

TICK MÌNH NHA!

Bình luận (1)
NT
Xem chi tiết
H24
20 tháng 7 2019 lúc 21:48

1) \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right).\sqrt{7}+7\sqrt{8}\)

Bình luận (0)
H24
20 tháng 7 2019 lúc 21:53

Xin lỗi xin lỗi :v

1)\(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right).\sqrt{7}+7\sqrt{8}\)

\(\sqrt{7}.\left(3\sqrt{7}-2\sqrt{14}\right)+14\sqrt{2}\)

= 21 - \(14\sqrt{2}+14\sqrt{2}\)

= 21

2) \(\left(\sqrt{8}-\sqrt{2}-\sqrt{5}\right)\left(\sqrt{18}-\sqrt{8}+\sqrt{5}\right)\)

\(\left(2\sqrt{2}-\sqrt{2}-\sqrt{5}\right)\left(3\sqrt{2}+\sqrt{5}-2\sqrt{2}\right)\)

\(\left(\sqrt{2}-\sqrt{5}\right)\left(\sqrt{2}+\sqrt{5}\right)\)

=\(\left(\sqrt{2}\right)^2-\left(\sqrt{5}\right)^2\)

= -3

Bình luận (0)
TA
Xem chi tiết
MP
28 tháng 8 2018 lúc 21:32

ta có : \(A=\left(4-\sqrt{7}\right)\left(\sqrt{14}+\sqrt{2}\right)\left(\sqrt{4+\sqrt{7}}\right)\)

\(\Leftrightarrow A=\left(4-\sqrt{7}\right)\left(\sqrt{7}+1\right)\left(\sqrt{8+2\sqrt{7}}\right)\)

\(\Leftrightarrow A=\left(4-\sqrt{7}\right)\left(\sqrt{7}+1\right)\left(\sqrt{\left(\sqrt{7}+1\right)^2}\right)\) \(\Leftrightarrow A=\left(4-\sqrt{7}\right)\left(\sqrt{7}+1\right)^2=\left(4-\sqrt{7}\right)\left(8+2\sqrt{7}\right)\)

\(\Leftrightarrow A=2\left(4-\sqrt{7}\right)\left(4+\sqrt{7}\right)=2\left(16-7\right)=2.9=18\)

Bình luận (0)
H24
Xem chi tiết
TA
Xem chi tiết
NT
6 tháng 11 2023 lúc 14:29

1: \(\left(\sqrt{10}-\sqrt{14}\right)\cdot\sqrt{6+\sqrt{35}}\)

\(=\left(\sqrt{5}-\sqrt{7}\right)\cdot\sqrt{12+2\sqrt{35}}\)

\(=\left(\sqrt{5}-\sqrt{7}\right)\left(\sqrt{5}+\sqrt{7}\right)\)

=5-7=-2

2: Sửa đề: \(\sqrt{4+\sqrt{8}}\cdot\sqrt{2+\sqrt{2+\sqrt{2}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2}}}\)

\(=\sqrt{4+2\sqrt{2}}\cdot\sqrt{2^2-\left(2+\sqrt{2}\right)}\)

\(=\sqrt{4+2\sqrt{2}}\cdot\sqrt{4-2-\sqrt{2}}\)

\(=\sqrt{2\left(2+\sqrt{2}\right)\left(2-\sqrt{2}\right)}=\sqrt{2}\)

Bình luận (0)
AQ
Xem chi tiết