tìm m để hàm số \(y=x^4-2\left(m-1\right)x^2+m-2\) đồng biến trên (1;3)
(theo 2 cách )
tìm m để hàm số \(y=\dfrac{2x^2+\left(m-1\right)x+1-m}{x-m}\) đồng biến trên \(\left(1;+\infty\right)\)
\(y'=\dfrac{2x^2-4mx-m^2+2m-1}{\left(x-m\right)^2}\)
Hàm đồng biến trên khoảng đã cho khi với mọi \(x>1\) ta có:
\(\left\{{}\begin{matrix}2x^2-4mx-m^2+2m-1\ge0\left(1\right)\\m\le1\end{matrix}\right.\)
Xét (1): ta có \(\Delta'=4m^2-2\left(-m^2+2m-1\right)=6m^2-4m+2>0\) ; \(\forall m\)
\(\Rightarrow\) (1) thỏa mãn khi: \(x_1< x_2\le1\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-1\right)\left(x_2-1\right)\ge0\\\dfrac{x_1+x_2}{2}< 1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-\left(x_1+x_2\right)+1\ge0\\x_1+x_2< 2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-m^2+2m-1}{2}-2m+1\ge0\\2m< 2\end{matrix}\right.\) \(\Rightarrow-1-\sqrt{2}\le m\le-1+\sqrt{2}\)
tìm m để hàm số \(y=x^3-\left(m+1\right)x^2-\left(2m^2-3m+2\right)x+2m^2-m\) đồng biến trên \(\left(2;+\infty\right)\)
\(y'=3x^2-2\left(m+1\right)x-\left(2m^2-3m+2\right)\)
\(\Delta'=\left(m+1\right)^2+3\left(2m^2-3m+2\right)=7\left(m^2+m+1\right)>0\) ; \(\forall m\)
\(\Rightarrow y'=0\) luôn có 2 nghiệm phân biệt
Bài toán thỏa mãn khi: \(x_1< x_2\le2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-2\right)\left(x_2-2\right)\ge0\\\dfrac{x_1+x_2}{2}< 2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-2\left(x_1+x_2\right)+4\ge0\\x_1+x_2< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-\left(2m^2-3m+2\right)}{3}-\dfrac{4\left(m+1\right)}{3}+4\ge0\\\dfrac{2\left(m+1\right)}{3}< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2m^2-m+6\ge0\\m< 5\end{matrix}\right.\) \(\Leftrightarrow-2\le m\le\dfrac{3}{2}\)
Tìm m để hàm số:
\(y=x^3-3mx^2+6\left(m^2-2\right)x+1\) đồng biến trên \(\left(2;+\infty\right)\)
\(y'=3x^2-6mx+6\left(m^2-2\right)=3\left(x^2-2mx+2m^2-4\right)\)
Hàm đồng biến trên khoảng đã cho khi với mọi \(x>2\) ta có \(y'\ge0\)
\(\Delta'=m^2-\left(2m^2-4\right)=-m^2+4\)
TH1: \(\Delta'\le0\Leftrightarrow-m^2+4\le0\Rightarrow\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}\Delta'>0\\x_1< x_2\le2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-m^2+4>0\\\left(x_1-2\right)\left(x_2-2\right)\le0\\\dfrac{x_1+x_2}{2}< 2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2< m< 2\\2m^2-4m\le0\\m< 2\end{matrix}\right.\) \(\Rightarrow0\le m< 2\)
Kết hợp lại ta được: \(\left[{}\begin{matrix}m\le-2\\m\ge0\end{matrix}\right.\)
tìm các giá trị của m để hàm số sau
a) \(y=-x^3+\left(m+2\right)x^2-3x\) nghịch biến trên R
b) \(y=x^3-3x^2+\left(1-m\right)x\) đồng biến trên R
a: \(y=-x^3+\left(m+2\right)x^2-3x\)
=>\(y'=-3x^2+2\left(m+2\right)x-3\)
=>\(y'=-3x^2+\left(2m+4\right)\cdot x-3\)
Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)
=>\(\left\{{}\begin{matrix}\left(2m+4\right)^2-4\cdot\left(-3\right)\left(-3\right)< =0\\-3< 0\end{matrix}\right.\)
=>\(4m^2+16m+16-4\cdot9< =0\)
=>\(4m^2+16m-20< =0\)
=>\(m^2+4m-5< =0\)
=>\(\left(m+5\right)\left(m-1\right)< =0\)
TH1: \(\left\{{}\begin{matrix}m+5>=0\\m-1< =0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>=-5\\m< =1\end{matrix}\right.\)
=>-5<=m<=1
TH2: \(\left\{{}\begin{matrix}m+5< =0\\m-1>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>=1\\m< =-5\end{matrix}\right.\)
=>\(m\in\varnothing\)
b: \(y=x^3-3x^2+\left(1-m\right)x\)
=>\(y'=3x^2-3\cdot2x+1-m\)
=>\(y'=3x^2-6x+1-m\)
Để hàm số đồng biến trên R thì \(y'>=0\forall x\)
=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3>0\\\left(-6\right)^2-4\cdot3\left(1-m\right)>=0\end{matrix}\right.\)
=>\(36-12\left(1-m\right)>=0\)
=>\(36-12+12m>=0\)
=>12m+24>=0
=>m+2>=0
=>m>=-2
tìm m để hàm số:
a y=\(\left(\sqrt{7-m}-1\right)x+2\) đồng biến trên R
b y=\(\left(m^2+m+1\right)x-5\) nghịch biến trên R
a.
Hàm số đồng biến trên R khi và chỉ khi:
\(\left\{{}\begin{matrix}7-m\ge0\\\sqrt{7-m}-1>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\le7\\m< 6\end{matrix}\right.\) \(\Leftrightarrow m< 6\)
b. Để hàm nghịch biến trên R
\(\Leftrightarrow m^2+m+1< 0\)
\(\Leftrightarrow\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}< 0\) (vô lý)
Vậy ko tồn tại m thỏa mãn yêu cầu
cảm ơn tất cả mọi người,đấy là bài cuối của tuần này rồi
cho hàm số \(y=\left(m^2-3m+2\right).x^2+\left(m-1\right)x+3.\)( m là tham số)
a) tìm m để hàm số trên là hàm số bậc nhất
b)tìm m để hàm số trên đồng biến, nghịch biến
a)Để y là hàm số bậc nhất thì
\(\hept{\begin{cases}m^2-3m+2=0\\m-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}\left(m-1\right)\left(m-2\right)=0\\m-1\ne0\end{cases}}}\)
Từ 2 điều trên suy ra m-2=0
=>m=2
Vậy m=2
Cho y=\(\frac{1}{3}mx^3-\left(m-1\right)x^2-3\left(m-2\right)x+\frac{1}{3}\)
a. Tìm m để hàm số đồng biến trên R
b. Tìm m để hàm số nghịch biến trên R
c. Tìm m để hàm số có 2 cực trị
d. Tìm m để hàm số có 2 cực trị x1,x2 sao cho x1+3x2=1
e. Tìm m để hàm số nghịch biến trên đoạn có độ dài bằng 1 (khi m>0)
Theo mình:
để hàm số đồng biến, đk cần là y'=0.
a>0 và \(\Delta'< 0\)
nghịch biến thì a<0
vì denta<0 thì hầm số cùng dấu với a
mình giải được câu a với b
câu c có hai cực trị thì a\(\ne\)0, y'=0, denta>0 (để hàm số có hai nghiệm pb)
câu d dùng viet
câu e mình chưa chắc lắm ^^
Bài 3: Cho hàm số: y = \(\left(m^2-4\right)\).x + 3m - 1 (m \(\ne\) \(\pm\) 2)
a) Tìm m để hàm số đồng biến
b) Tìm m để hàm số nghịch biến
Cho hàm số \(y=x^4-2\left(m-1\right)x^2+m-2\left(1\right)\), với m là tham số thực. Tìm m để hàm số (1) đồng biến trên khoảng \(\left(1;3\right)\)
Ta có : \(y'=4x^3-4\left(m-1\right)x\)
\(y'=0\Leftrightarrow4x^3-4\left(m-1\right)x=0\Leftrightarrow x\left[x^2-\left(m-1\right)\right]=0\)
Trường hợp 1 : nếu \(m-1\le0\Leftrightarrow m\le1\), hàm số đồng biến trên khoảng \(\left(0;+\infty\right)\), vậy \(m\le1\) thỏa mãn yêu cầu bài toán
Trường hợp 2 : nếu \(m-1>0\Leftrightarrow m>1\), hàm số đồng biến trên khoảng \(\left(-\sqrt{m-1};0\right)\) và \(\left(\sqrt{m-1};+\infty\right)\)
Để hàm số đồng biến trên khoảng (1;3) thì \(\left(\sqrt{m-1}\le1\Leftrightarrow m\le2\right)\)
Vậy hàm số đồng biến trên khoảng (1;3) \(\Leftrightarrow m\in\left(-\infty;2\right)\)