Những câu hỏi liên quan
H24
Xem chi tiết
NL
21 tháng 5 2020 lúc 15:10

Đặt \(\sqrt{2x^2-8x+12}=t>0\)

\(\Rightarrow x^2-4x=\frac{t^2-12}{2}\)

BPT trở thành:

\(\frac{t^2-12}{2}-6-t\ge0\)

\(\Leftrightarrow t^2-2t-24\ge0\Rightarrow\left[{}\begin{matrix}t\ge6\\t\le-4\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{2x^2-8x+12}\ge6\)

\(\Leftrightarrow2x^2-8x+12\ge36\)

\(\Leftrightarrow x^2-4x-12\ge0\Rightarrow\left[{}\begin{matrix}x\ge6\\x\le-2\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
NL
23 tháng 2 2020 lúc 8:16

ĐKXĐ: \(-2\le x\le3\)

Do trên \(\left[-2;3\right]\) cả \(2x+5\)\(x+4\) đều dương nên BPT tương đương:

\(\frac{1}{2x+5}\le\frac{1}{x+4}\Leftrightarrow x+4\le2x+5\Leftrightarrow x\ge-1\)

Vậy nghiệm của BPT là \(\left[{}\begin{matrix}x=-2\\-1\le x\le3\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
NL
18 tháng 2 2020 lúc 18:27

ĐKXĐ: \(x\ge2\)

Khi đó ta có \(x^2-x+1\ge3\Rightarrow1-2\sqrt{x^2-x+1}< 0\)

Do đó BPT tương đương:

\(\sqrt{2\left(x^2+7x+3\right)}-\sqrt{x^2+x-6}-3\sqrt{x+1}\le0\)

\(\Leftrightarrow\sqrt{2x^2+14x+6}\le\sqrt{x^2+x-6}+3\sqrt{x+1}\)

\(\Leftrightarrow2x^2+14x+6\le x^2+10x+3+6\sqrt{\left(x+1\right)\left(x^2+x-6\right)}\)

\(\Leftrightarrow x^2+4x+3\le6\sqrt{\left(x+1\right)\left(x+3\right)\left(x-2\right)}\)

\(\Leftrightarrow\left(x+1\right)\left(x+3\right)\le6\sqrt{\left(x+1\right)\left(x+3\right)\left(x-2\right)}\)

\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x+3\right)}\le6\sqrt{x-2}\)

\(\Leftrightarrow\left(x+1\right)\left(x+3\right)\le36\left(x-2\right)\)

\(\Leftrightarrow x^2-32x+75\le0\)

\(\Rightarrow16-\sqrt{181}\le x\le16+\sqrt{181}\)

Bình luận (0)
 Khách vãng lai đã xóa
JE
Xem chi tiết
NL
5 tháng 6 2020 lúc 23:15

a/ Đặt \(\sqrt{x^2-3x+5}=t>0\)

\(\Leftrightarrow t^2-5-t>1\Leftrightarrow t^2-t-6>0\)

\(\Rightarrow\left[{}\begin{matrix}t>3\\t< -2\left(l\right)\end{matrix}\right.\) \(\Rightarrow\sqrt{x^2-3x+5}>3\)

\(\Leftrightarrow x^2-3x+5>9\Leftrightarrow x^2-3x-4>0\Rightarrow\left[{}\begin{matrix}x>4\\x< -1\end{matrix}\right.\)

b/ ĐKXĐ: \(x\ge1\)

Đặt \(\sqrt[4]{x-\sqrt{x^2-1}}=t>0\Rightarrow\sqrt[4]{x+\sqrt{x^2-1}}=\frac{1}{t}\)

\(\Leftrightarrow t+\frac{4}{t^2}-3< 0\)

\(\Leftrightarrow t^3-3t^2+4< 0\)

\(\Leftrightarrow\left(t+1\right)\left(t-2\right)^2< 0\)

Do \(t>0\Rightarrow t+1>0\Rightarrow VT\ge0\Rightarrow\) BPT vô nghiệm

Bình luận (0)
TP
Xem chi tiết
NL
13 tháng 3 2020 lúc 22:41

Đặt \(x^2-3x+3=t>0\)

\(\sqrt{t}+\sqrt{t+3}\ge3\)

\(\Leftrightarrow2t+3+2\sqrt{t^2+3t}\ge9\)

\(\Leftrightarrow\sqrt{t^2+3t}\ge3-t\)

- Với \(t>3\Rightarrow\left\{{}\begin{matrix}VT>0\\VP< 0\end{matrix}\right.\) BPT luôn đúng

- Với \(t\le3\)

\(\Leftrightarrow t^2+3t\ge t^2-6t+9\Rightarrow t\ge1\)

Vậy nghiệm của BPT là \(t\ge1\Leftrightarrow\sqrt{x^2-3x+3}\ge1\)

\(\Leftrightarrow x^2-3x+2\ge0\Rightarrow\left[{}\begin{matrix}x\le1\\x\ge2\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết
AL
Xem chi tiết
H24
Xem chi tiết
NH
10 tháng 8 2016 lúc 21:14

điều kiện : \(x\ge\frac{5}{2}\)ta bình phương hai vế. Ta được :

\(\begin{cases}-x+5>\sqrt{\left(x+1\right)\left(2x-5\right)}\\\frac{5}{2}\le x< 5\end{cases}\)

<=> \(\begin{cases}\left(5-x\right)^2>2x^2-3x-5\\\frac{5}{2}\le x< 5\end{cases}\)

<=> \(-\frac{5}{2}\le x< 3\)

vậy nghiệm như trên đó :.,...

Bình luận (1)
NT
10 tháng 8 2016 lúc 21:12

ĐK:X>=-1

X+6>3X+6+2\(\sqrt{\left(X+1\right)\left(2X+5\right)}\)

-X>\(\sqrt{\left(X+1\right)\left(2X+5\right)}\)

PTVN

Bình luận (0)
NL
Xem chi tiết
HP
25 tháng 3 2021 lúc 21:50

ĐK: \(x\ge1;x\le-2\)

\(\sqrt{x^2-1}+\sqrt{x^2-x}\le\sqrt{x^2+x-2}\)

\(\Leftrightarrow2x^2-x-1+2\sqrt{\left(x^2-1\right)\left(x^2-x\right)}\le x^2+x-2\)

\(\Leftrightarrow x^2-2x+1+2\sqrt{\left(x^2-1\right)\left(x^2-x\right)}\le0\)

\(\Leftrightarrow\left(x-1\right)^2+2\sqrt{\left(x^2-1\right)\left(x^2-x\right)}\le0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\\left(x^2-1\right)\left(x^2-x\right)=0\end{matrix}\right.\)

\(\Leftrightarrow x=1\left(tm\right)\)

Vậy bất phương trình có nghiệm \(x=1\)

Bình luận (0)