Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

NL

Giải bpt sau : $\sqrt{x^{2}-1}$ + $\sqrt{x^{2}-x}$ $\leq$ $\sqrt{x^{2}+x-2}$

HP
25 tháng 3 2021 lúc 21:50

ĐK: \(x\ge1;x\le-2\)

\(\sqrt{x^2-1}+\sqrt{x^2-x}\le\sqrt{x^2+x-2}\)

\(\Leftrightarrow2x^2-x-1+2\sqrt{\left(x^2-1\right)\left(x^2-x\right)}\le x^2+x-2\)

\(\Leftrightarrow x^2-2x+1+2\sqrt{\left(x^2-1\right)\left(x^2-x\right)}\le0\)

\(\Leftrightarrow\left(x-1\right)^2+2\sqrt{\left(x^2-1\right)\left(x^2-x\right)}\le0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\\left(x^2-1\right)\left(x^2-x\right)=0\end{matrix}\right.\)

\(\Leftrightarrow x=1\left(tm\right)\)

Vậy bất phương trình có nghiệm \(x=1\)

Bình luận (0)

Các câu hỏi tương tự
NC
Xem chi tiết
MC
Xem chi tiết
NC
Xem chi tiết
DA
Xem chi tiết
LN
Xem chi tiết
NT
Xem chi tiết
TN
Xem chi tiết
TV
Xem chi tiết
NT
Xem chi tiết