giải bpt:
\(\dfrac{2x-3}{19+8x}\)<0
giải BPT :
\(1+\dfrac{2x+1}{3}>\dfrac{2x-1}{6}\)
\(1+\dfrac{2x+1}{3}>\dfrac{2x-1}{6}\)
\(\Leftrightarrow6+4x+2>2x-1\)
\(\Leftrightarrow4x-2x>-1-6-2\)
\(\Leftrightarrow x>-\dfrac{9}{2}\)
Vậy S = { x/ x > \(-\dfrac{9}{2}\)}
\(1+\dfrac{2x+1}{3}>\dfrac{2x-1}{6}\)
⇔ \(\dfrac{6+2\left(2x+1\right)}{6}>\dfrac{2x-1}{6}\)
⇔ 6 + 4x + 2 > 2x - 1
⇔ 4x + 8 > 2x - 1
⇔ 2x > - 9
⇔ x > \(\dfrac{-9}{2}\)
KL....
\(1+\dfrac{2x+1}{3}>\dfrac{2x-1}{6}\)
\(\Leftrightarrow\dfrac{6}{6}+\dfrac{2\left(2x+1\right)}{6}>\dfrac{2x-1}{6}\)
\(\Leftrightarrow6+4x+2>2x-1\)
\(\Leftrightarrow4x-2x>-1-6-2\)
\(\Leftrightarrow2x>-9\)
\(\Leftrightarrow x>-\dfrac{9}{2}\)
Vậy BPT có nghiệm \(x>-\dfrac{9}{2}\)
giải BPT\(\dfrac{2x^2}{\left(3-\sqrt{9+2x}\right)^2}< x+21\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge-\dfrac{9}{2}\\x\ne0\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{\left(3+\sqrt{9+2x}\right)^2.2x^2}{\left(3-\sqrt{9+2x}\right)^2\left(3+\sqrt{9+2x}\right)^2}< x+21\)
\(\Leftrightarrow\dfrac{\left(3+\sqrt{9+2x}\right)^2.2x^2}{4x^2}< x+21\)
\(\Leftrightarrow\left(3+\sqrt{9+2x}\right)^2< 2x+42\)
\(\Leftrightarrow x+9+3\sqrt{9+2x}< x+21\)
\(\Leftrightarrow\sqrt{9+2x}< 4\)
\(\Leftrightarrow9+2x< 16\Rightarrow x< \dfrac{7}{2}\)
Vậy \(\left\{{}\begin{matrix}-\dfrac{9}{2}\le x< \dfrac{7}{2}\\x\ne0\end{matrix}\right.\)
giải BPT :
\(\dfrac{2x-1}{3}-\dfrac{x+3}{2}\le1\)
\(\dfrac{2x-1}{3}\)-\(\dfrac{x+3}{2}\)\(\le\)1
<=>\(\dfrac{2\left(2x-1\right)}{6}\)+\(\dfrac{3\left(x+3\right)}{6}\)\(\le\)\(\dfrac{6}{6}\)
=>4x -2 +3x+9\(\le\)6
<=>7x+7\(\le\)6
<=>7x\(\le\)6-7
<=>7x\(\le\)-1
<=>x\(\le\)\(\dfrac{-1}{7}\)
vậy bất phương trình có nghiệm là x\(\le\)\(\dfrac{-1}{7}\)
Mashiro ShiinaAkai HarumaNhã Doanh giúp mk vs
\(\dfrac{2x-1}{3}\)-\(\dfrac{x+3}{2}\)\(\le\)1
<=>\(\dfrac{2\left(2x-1\right)}{6}\)-\(\dfrac{3\left(x+3\right)}{6}\le\dfrac{6}{6}\)
=>4x-2-3x-9\(\le\)6
<=>x-11\(\le\)6
<=>x\(\le\)6+11
<=>x\(\le\)17
Vậy bất phương trình có nghiệm là x\(\le\)17
giải BPT \(\dfrac{2x-1}{3}+\dfrac{x-1}{2}\le3\)
\(\dfrac{2x-1}{3}\)+\(\dfrac{x-1}{2}\)\(\le3\)
<=> \(\dfrac{2\left(2x-1\right)}{6}\)+\(\dfrac{3\left(x-1\right)}{6}\)\(\le\dfrac{18}{6}\)
<=> 4x -2+3x-3\(\le\)18
<=>7x-5\(\le\)18
<=>7x\(\le\)23
<=>x\(\le\)\(\dfrac{23}{7}\)
Vậy bất phương trình có nghiệm là x\(\le\)\(\dfrac{23}{7}\)
\(\dfrac{2x-1}{3}\)+ \(\dfrac{x-1}{2}\)\(\le\) 3
\(\Leftrightarrow\) \(\dfrac{2.\left(2x-1\right)+3.\left(x-1\right)}{6}\)\(\le\) \(\dfrac{18}{6}\)
\(\Leftrightarrow\) 2.(2x-1)+ 3.( x-1)\(\le\) 18
\(\Leftrightarrow\) 4x- 2+ 3x- 3\(\le\) 18
\(\Leftrightarrow\) 4x+ 3x\(\le\) 18+ 2+ 3
\(\Leftrightarrow\) 7x\(\le\) 23
\(\Leftrightarrow\) x\(\le\) \(\dfrac{23}{7}\)
vậy bpt có no là x\(\le\) \(\dfrac{23}{7}\)
1) giải các BPT sau
a) \(\dfrac{x^2-4x+4}{x^2-2x^2-4x+8}\)>0
b) \(\dfrac{7-8x}{x^2+1}\)>0
c) \(\dfrac{2x+1}{x+1}\) \(\le\) 0
a.Ta có : \(\dfrac{x^2-4x+4}{x^3-2x^2-4x+8}=\dfrac{\left(x-2\right)^2}{\left(x-2\right)^2\left(x+2\right)}=\dfrac{1}{x+2}\)
Để \(\dfrac{1}{x+2}>0\) thì 1 và x+2 cùng dấu
mà 1>0
=>x + 2 > 0 <=> x > 2
\(\Rightarrow S=\left\{x|x>2\right\}\)
b, Ta có : \(x^2\ge0\Rightarrow x^2+1>0\)
Để \(\dfrac{7-8x}{x^2+1}>0\) thì 7 - 8x và \(x^2+1\) cùng dấu
mà \(x^2+1>0\Rightarrow7-8x>0\Leftrightarrow x< \dfrac{7}{8}\)
\(\Rightarrow S=\left\{x|x< \dfrac{7}{8}\right\}\)
c. Ta có bảng xét dấu:
x | -\(\infty\) -1 -\(\dfrac{1}{2}\) +\(\infty\) |
x+1 | - 0 + + |
2x+1 | - - 0 + |
\(\dfrac{2x+1}{x+1}\) | + \(//\) - 0 + |
Bổ xung câu c:
Vậy : \(-1< x\le\dfrac{-1}{2}\)
\(\sqrt{3x+4}-\sqrt{5-x}+3x^{^2}-8x-19>0\) giải bpt
\(\dfrac{8x^2}{3\left(1-4x^2\right)}=\dfrac{2x}{6x-3}-\dfrac{1+8x}{4+8x}\) giải pt
\(\dfrac{8x^2}{3\left(1-4x^2\right)}=\dfrac{2x}{6x-3}-\dfrac{1+8x}{4+8x}\)
\(\Leftrightarrow\dfrac{8x^2}{3\left(1-2x\right)\left(1+2x\right)}=\dfrac{2x}{3\left(2x-1\right)}-\dfrac{1+8x}{4\left(1+2x\right)}\)
\(\Leftrightarrow\dfrac{-32x^2}{12\left(2x-1\right)\left(2x+1\right)}=\dfrac{2x.4\left(1+2x\right)-\left(1+8x\right).3\left(2x-1\right)}{12\left(2x-1\right)\left(2x+1\right)}\)
\(\Leftrightarrow8x\left(1+2x\right)-\left(1+8x\right).3.\left(2x-1\right)=-32x^2\)
\(\Leftrightarrow8x+16x^2-6x+3-48x^2+24x+32x^2=0\)
\(\Leftrightarrow26x+3=0\)
\(\Leftrightarrow x=-\dfrac{3}{26}\)
Vậy:......
Giải pt sau
a.(2x+3)(x-5)=4x2+6x
b.x/2x-6 - x/2x+2 = 2x/(x+1)(x-3)
c.giải bpt sau : 12x+1/12 ≤ 9x+1/3 - 8x+1/4
Giải các BPT sau:
a) \(16x-5x^2-3\le0\)
b) \(\dfrac{2x+5}{x-24}>1\)
`a)16x-5x^2-3 <= 0`
`<=>5x^2-16x+3 >= 0`
`<=>5x^2-15x-x+3 >= 0`
`<=>(x-3)(5x-1) >= 0`
`<=>` $\left[\begin{matrix} \begin{cases} x-3 \ge 0<=>x \ge 3\\5x-1 \ge 0<=>x \ge \dfrac{1}{5} \end{cases}\\ \begin{cases} x-3 \le 0<=>x \le 3\\5x-1 \le 0<=>x \le \dfrac{1}{5} \end{cases}\end{matrix}\right.$
`<=>` $\left[\begin{matrix} x \ge 3\\ x \le \dfrac{1}{5}\end{matrix}\right.$
Vậy `S={x|x >= 3\text{ hoặc }x <= 1/5}`
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
`b)[2x+5]/[x-24] > 1`
`<=>[2x+5]/[x-24]-1 > 0`
`<=>[2x+5-x+24]/[x-24] > 0`
`<=>[x+29]/[x-24] > 0`
`<=>` $\left[\begin{matrix} x < -29 \\ x > 24\end{matrix}\right.$
Vậy `S={x|x > 24\text{ hoặc }x < -29}`