Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
VS
Xem chi tiết
TP
26 tháng 8 2018 lúc 19:52

\(\sqrt{4x^2-4x+1}\le5-x\)

\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}\le5-x\)

\(\Leftrightarrow2x-1\le5-x\)

\(\Leftrightarrow3x\le6\)

\(\Leftrightarrow x\le2\)

Bình luận (0)
VS
26 tháng 8 2018 lúc 20:22

bạn làm sai rồi nhé bởi vì chưa có điều kiện của x nên \(\sqrt{\left(2x-1\right)^2}=|2x-1|\)chứ không được suy ra luôn là bằng 2x-1.

Cảm ơn bn đã trả lời câu hỏi của mình

Bình luận (0)
VT
Xem chi tiết
UK
4 tháng 12 2017 lúc 11:25

Ta có: \(\left(-x^2+4x+21\right)-\left(-x^2+3x+10\right)=x+11>0\Rightarrow B>0\)

\(B^2=\left(x+3\right)\left(7-x\right)+\left(x+2\right)\left(5-x\right)-2\sqrt{\left(x+3\right)\left(7-x\right)\left(x+2\right)\left(5-x\right)}=\left(\sqrt{\left(x+3\right)\left(5-x\right)}-\sqrt{\left(x+2\right)\left(7-x\right)}\right)^2+2\ge2\)

\(\Rightarrow B\ge\sqrt{2}\)

GTNN của B là \(\sqrt{2}\Leftrightarrow x=\dfrac{1}{3}\)

Bình luận (0)
CP
Xem chi tiết
NM
24 tháng 11 2021 lúc 7:07

\(a,\Leftrightarrow x-1=4\Leftrightarrow x=5\\ b,\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{4}\\3x+1=4x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{4}\\x=4\left(tm\right)\end{matrix}\right.\Leftrightarrow x=4\\ c,ĐK:x\ge-5\\ PT\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\\ \Leftrightarrow3\sqrt{x+5}=6\\ \Leftrightarrow\sqrt{x+5}=3\\ \Leftrightarrow x+5=9\\ \Leftrightarrow x=4\left(tm\right)\)

\(d,\Leftrightarrow\sqrt{\left(x-2\right)^2}=\sqrt{\left(\sqrt{5}+1\right)^2}\\ \Leftrightarrow\left|x-2\right|=\sqrt{5}+1\\ \Leftrightarrow\left[{}\begin{matrix}x-2=\sqrt{5}+1\\2-x=\sqrt{5}+1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{5}+3\\x=1-\sqrt{5}\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
ND
17 tháng 7 2018 lúc 7:27

\(\sqrt{4x^2-4x+1}\le5\)

\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}\le5\)

\(\Leftrightarrow\left|2x-1\right|\le5\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-1\le5\\1-2x\le5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x\le6\\-2x\le4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le3\\x\ge-2\end{matrix}\right.\)

Vậy: \(3\ge x\ge-2\)

Bình luận (0)
LQ
Xem chi tiết
RT
31 tháng 8 2017 lúc 19:30

\(x+\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}=2\) ; \(x\ge\dfrac{-1}{4}\)

\(\Leftrightarrow x+\sqrt{x+\dfrac{1}{4}+2.\dfrac{1}{2}\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{4}}=2\)

\(\Leftrightarrow x+\sqrt{\left(\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}\right)^2}=2\)

\(\Leftrightarrow x+\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}=2\)

\(\Leftrightarrow x+\dfrac{1}{4}+\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}=2\)

\(\Leftrightarrow\left(\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}\right)^2=2\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}=2\\\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}=-2\end{matrix}\right.\)\(\Rightarrow x=2-\sqrt{2}\)

Bình luận (1)
BV
7 tháng 11 2017 lúc 11:00

a) \(\sqrt{4x^2-4x+1}\le5-x\)\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}\le5-x\)
\(\Leftrightarrow\left|2x-1\right|\le5-x\).
Để bất phương trình có nghiệm thì \(5-x\ge0\Leftrightarrow x\le5\).
Nếu \(x\le\dfrac{1}{2}\), bất phương trình trở thành:
\(1-2x\le5-x\Leftrightarrow-x\le4\)\(\Leftrightarrow x\ge-4\).
vậy \(-4\le x\le\dfrac{1}{2}\) là nghiệm của bất phương trình. (1)
nếu \(\dfrac{1}{2}\le x\le5\), bất phương trình trở thành:
\(2x-1\le5-x\Leftrightarrow3x\le6\)\(\Leftrightarrow x\le2\).
vậy \(\dfrac{1}{2}\le x\le2\) là nghiệm của bất phương trình. (2)
kết hợp điều kiện (1) và (2) ta có \(-4\le x\le2\) là nghiệm của bất phương trình.

Bình luận (0)
NT
Xem chi tiết
NT
31 tháng 8 2018 lúc 22:02

nguyên tín??

Bình luận (0)
NA
31 tháng 8 2018 lúc 22:07

\(\sqrt{4x^2-4x+1}< 5-x\)

\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}< 5-x\)

\(\Leftrightarrow\left|2x-1\right|< 5-x\)(1)

Đk : \(5-x\ge0\Leftrightarrow x\le5\)

(1)\(\Rightarrow\orbr{\begin{cases}2x-1=5-x\\2x-1=x-5\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\left(n\right)\\x=-4\left(n\right)\end{cases}}}\)

Vậy \(x\in\left\{-4;2\right\}\)

Bình luận (0)
H24
31 tháng 8 2018 lúc 22:08

\(\sqrt{4x^2-4x+1}< 5-x\)

\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}< 5-x\)

\(\Leftrightarrow|2x-1|< 5-x\)

TH1: \(2x-1\ge0\Rightarrow x\ge\frac{1}{2}\)

\(\Rightarrow2x-1< 5-x\)

\(\Leftrightarrow3x< 6\)

\(\Leftrightarrow x< 2\)

Kết hợp vs điều kiện ta đc \(\frac{1}{2}\le x< 2\) (1)

TH2: \(2x-1< 0\Rightarrow x< \frac{1}{2}\)

\(\Rightarrow1-2x< 5-x\)

\(\Leftrightarrow x>-6\)

Kết hợp vs đk ta đc: \(-6< x< \frac{1}{2}\) (2)

Từ (1) và (2) \(\Rightarrow-6< x< 2\)

Bình luận (0)
MY
Xem chi tiết
H24
24 tháng 6 2019 lúc 7:53

a) ĐKXĐ: \(x\ge-4\)

a) Ta có: \(\sqrt{6-4x+x^2}=x+4\Rightarrow\left(x+4\right)^2=x^2-4x+6\)

\(\Rightarrow x^2+8x+16=x^2-4x+6\Rightarrow4x+10=0\Rightarrow x=-\frac{5}{2}\left(loại\right)\)

Vậy pt vô nghiệm

b) \(\sqrt{4x^2-4x+1}+\sqrt{2x-1}=0\Rightarrow\sqrt{\left(2x-1\right)^2}+\sqrt{2x-1}=0\)

\(\Leftrightarrow\sqrt{2x-1}\left(\sqrt{2x-1}+1\right)=0\Rightarrow x=\frac{1}{2}\)

Bình luận (0)
H24
Xem chi tiết
NL
22 tháng 8 2021 lúc 17:15

ĐKXĐ: \(x>\dfrac{1}{4}\)

Đặt \(\dfrac{x}{\sqrt{4x-1}}=t>0\)

\(\Rightarrow t+\dfrac{1}{t}=2\Rightarrow t^2-2t+1=0\)

\(\Rightarrow t=1\Rightarrow x=\sqrt{4x-1}\)

\(\Rightarrow x^2-4x+1=0\Rightarrow\left[{}\begin{matrix}x=2+\sqrt{3}\\x=2-\sqrt{3}\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
NT
30 tháng 10 2023 lúc 20:52

a: ĐKXĐ: \(x\in R\)

\(\sqrt{x^2-4x+4}=7\)

=>\(\sqrt{\left(x-2\right)^2}=7\)

=>|x-2|=7

=>\(\left[{}\begin{matrix}x-2=7\\x-2=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-5\end{matrix}\right.\)

b: ĐKXĐ: x>=-3

\(\sqrt{4x+12}-3\sqrt{x+3}+\dfrac{4}{3}\cdot\sqrt{9x+27}=6\)

=>\(2\sqrt{x+3}-3\sqrt{x+3}+\dfrac{4}{3}\cdot3\sqrt{x+3}=6\)

=>\(3\sqrt{x+3}=6\)

=>\(\sqrt{x+3}=2\)

=>x+3=4

=>x=1(nhận)

Bình luận (0)