Những câu hỏi liên quan
H24
Xem chi tiết
NM
18 tháng 12 2021 lúc 8:15

\(a,ĐK:x\ge0;x\ne9\\ A=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\\ A=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{-3}{\sqrt{x}+3}\\ b,x=13-4\sqrt{3}=\left(2\sqrt{3}-1\right)^2\\ \Leftrightarrow A=\dfrac{-3}{2\sqrt{3}-1+3}=\dfrac{-3}{2\sqrt{3}+2}=\dfrac{-3\left(2\sqrt{3}-2\right)}{8}\)

\(c,A< -\dfrac{1}{2}\Leftrightarrow\dfrac{-3}{\sqrt{x}+3}+\dfrac{1}{2}< 0\Leftrightarrow\dfrac{\sqrt{x}-3}{2\left(\sqrt{x}+3\right)}< 0\\ \Leftrightarrow\sqrt{x}-3< 0\left(\sqrt{x}+3>0\right)\\ \Leftrightarrow\sqrt{x}< 3\Leftrightarrow0\le x< 9\\ d,A=-\dfrac{2}{3}\Leftrightarrow\dfrac{3}{\sqrt{x}+3}=\dfrac{2}{3}\\ \Leftrightarrow2\sqrt{x}+6=9\\ \Leftrightarrow\sqrt{x}=\dfrac{3}{2}\Leftrightarrow x=\dfrac{9}{4}\left(tm\right)\\ e,\Leftrightarrow\sqrt{x}+3\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow\sqrt{x}=0\left(\sqrt{x}\ge0\right)\\ \Leftrightarrow x=0\left(tm\right)\\ f,\sqrt{x}+3\ge3\\ \Leftrightarrow A=-\dfrac{3}{\sqrt{x}+3}\ge-\dfrac{3}{3}=-1\\ A_{min}=-1\Leftrightarrow x=0\)

Bình luận (0)
BB
Xem chi tiết
NM
Xem chi tiết
AH
16 tháng 7 2021 lúc 17:04

Bạn vui lòng viết đề bằng công thức toán để được hỗ trợ tốt hơn!

Bình luận (0)
NM
16 tháng 7 2021 lúc 17:10

giúp mình với ạ

Bình luận (0)
NT
17 tháng 7 2021 lúc 0:09

a) Ta có: \(P=\dfrac{3x-2\sqrt{x}-4}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)

\(=\dfrac{3x-2\sqrt{x}-4-x+1-x-4\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x-6\sqrt{x}-7}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

 

Bình luận (0)
NM
Xem chi tiết
NL
14 tháng 7 2021 lúc 17:58

ĐKXĐ: \(x\ge0;x\ne1\)

\(P=\dfrac{3x-2\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\dfrac{\left(2\sqrt{x}+2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{3x-2\sqrt{x}-4-x+1-2x-6\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{-8\sqrt{x}-7}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

Đề bài có vẻ không hợp lý

Bình luận (0)
NT
Xem chi tiết
HM
19 tháng 4 2021 lúc 20:14

tick cho em la em lam lien

Bình luận (0)
NK
Xem chi tiết
AT
10 tháng 7 2021 lúc 16:25

a) \(P=\dfrac{x^2+3x}{x^2-8x+16}:\left(\dfrac{x+4}{x}+\dfrac{1}{x-4}+\dfrac{19-x^2}{x^2-4x}\right)\left(x\ne0,x\ne4\right)\)

\(=\dfrac{x^2+3x}{\left(x-4\right)^2}:\left(\dfrac{x+4}{x}+\dfrac{1}{x-4}+\dfrac{19-x^2}{x\left(x-4\right)}\right)\)

\(=\dfrac{x^2+3x}{\left(x-4\right)^2}:\dfrac{\left(x+4\right)\left(x-4\right)+x+19-x^2}{x\left(x-4\right)}\)

\(=\dfrac{x^2+3x}{\left(x-4\right)^2}:\dfrac{x+3}{x\left(x-4\right)}=\dfrac{x\left(x+3\right)}{\left(x-4\right)^2}.\dfrac{x\left(x-4\right)}{x+3}=\dfrac{x^2}{x-4}\)

b) \(x=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\sqrt{3}+1-\sqrt{3}+1=2\)

\(\Rightarrow P=\dfrac{2^2}{2-4}=-2\)

 

Bình luận (0)
IT
10 tháng 7 2021 lúc 16:30

a)\(ĐKXĐ:\left\{{}\begin{matrix}x\left(x-4\right)\ne0\\\dfrac{x+4}{x}+\dfrac{1}{x-4}+\dfrac{19-x^2}{x^2-4x}\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne4\\x\ne0\\x\ne-3\end{matrix}\right.\)

\(P=\dfrac{x\left(x+3\right)}{\left(x-4\right)}:\left(\dfrac{x^2-16+x+19-x^2}{x\left(x-4\right)}\right)=\dfrac{x\left(x+3\right)}{\left(x-4\right)^2}.\left(\dfrac{x\left(x-4\right)}{x+3}\right)=\dfrac{x^2}{x-4}\)

b)\(x=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3+1}-\left(\sqrt{3}-1\right)=2\)

thay x=2 vào P ta có \(P=\dfrac{2^2}{2-4}=-2\)

Bình luận (0)
H24
Xem chi tiết
NT
16 tháng 9 2021 lúc 22:16

a: Ta có: \(A=\left(\dfrac{3x+3}{x-9}-\dfrac{2\sqrt{x}}{\sqrt{x}+3}-\dfrac{\sqrt{x}}{\sqrt{x}-3}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(=\dfrac{3x+3-2x+6\sqrt{x}-x-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{2\sqrt{x}-2-\sqrt{x}+3}\)

\(=\dfrac{3}{\sqrt{x}+3}\)

Bình luận (0)
HC
Xem chi tiết
TH
17 tháng 1 2021 lúc 21:09

\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{3x^2+2}-\sqrt{4+x}}{x^2-1}=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{3x^2-x-2}{\sqrt{3x^2+2}+\sqrt{4+x}}}{x^2-1}=\lim\limits_{x\rightarrow1}\dfrac{3x+2}{\left(x+1\right)\left(\sqrt{3x^2+2}+\sqrt{4+x}\right)}=\dfrac{5}{2.2\sqrt{5}}=\dfrac{\sqrt{5}}{4}\).

Từ đó a = 5; b = 4 nên a - b = 1.

Bình luận (0)
L2
Xem chi tiết
NU
21 tháng 11 2021 lúc 20:26

undefined

Bình luận (0)