`đk:x>=0`
`x^2-3x-4=0?`
`a-b+c=0`
`=>x_1=-1(l),x_2=4`
`=>A=(-1)/(sqrt4-3)=1`
`đk:x>=0`
`x^2-3x-4=0?`
`a-b+c=0`
`=>x_1=-1(l),x_2=4`
`=>A=(-1)/(sqrt4-3)=1`
Cho biểu thức:
A = (\(\dfrac{2\sqrt{x}}{\sqrt{x}+3}\)+\(\dfrac{\sqrt{x}}{\sqrt{x}-3}\)-\(\dfrac{3x+3}{x-9}\)) : (\(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}\) - 1)
a) Rút gọn A
b) Tính giá trị của A khi x = 13 - \(4\sqrt{3}\)
c) Tìm x để A < \(-\dfrac{1}{2}\)
d) Tìm x để A = \(\dfrac{-2}{3}\)
e) Tìm x \(\in\) Z để A nhận giá trị nguyên
f) Tìm GTNN của A
Cho \(\)\(P=\dfrac{3x-2\sqrt{x}-4}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)
a, Rút gọn P.
b, Tính P khi \(\)\(x=4+2\sqrt{3}\)
c, Tìm xϵZ để PϵZ
cho A=\(\left(\dfrac{3x+3}{x-9}-\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{3-\sqrt{x}}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
tính x để A\(>\dfrac{1}{2}\)
tính giá trị nguyên của x để biểu thức Q= \(\dfrac{2P\sqrt{x}}{3}\) nhận giá trị nguyên
Thu gọn P
\(P=\dfrac{x-\sqrt{x}}{x-9}+\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}-3}\)
a) Tính P biết \(x=\sqrt{6+4\sqrt{2}}+\sqrt{6-4\sqrt{2}}\)
b) Tính P biết \(x=\dfrac{1}{\sqrt{2}-1}-\dfrac{1}{\sqrt{2}+1}\)
Cho biểu thức Q = \(\dfrac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{1-\sqrt{x}}\)
a) rút gọn Q
b) Tính giá trị của Q khi x = \(4+2\sqrt{3}\)
c) Tìm các giá trị của x để Q = 3
d) Tìm các giá trị cảu x để Q > \(\dfrac{1}{2}\)
e) Tìm x \(\in\) Z để Q = Z
Cho biết biểu thức A = \(\dfrac{4}{2\sqrt{x}-x}\) B = \(\dfrac{\sqrt{x}-4}{x-2\sqrt{x}}+\dfrac{3}{\sqrt{x}-2}\) với x > 0,x ≠ 4
a,Tính giá trị biểu thức A khi x = 2
b,Chứng minh rằng P = B : A = 1 - \(\sqrt{x}\)
Cho P= \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\) và Q= \(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
a) rút gọn P
b) Tính M= P : Q và so sánh M với -1
Cho biểu thức: A=\(\dfrac{\sqrt{x-2\sqrt{x-3}+4}}{\sqrt{x}-\sqrt{x-3}-\sqrt{x^2+3x}+\sqrt{x^2-9}}-\dfrac{1}{\sqrt{x}+\sqrt{x-3}}\)
a. Rút gọn A
b. Tìm x dể A nhận giá trị nguyên
Cho các biểu thức
A = \(\dfrac{1}{x+2}-\dfrac{2x}{4-x^2}+\dfrac{3}{x-2}\) và B = \(\dfrac{x+2}{3x+2}\)với x ≠ 2; x ≠ -2; x ≠ -\(\dfrac{2}{3}\)
a. Tính giá trị của A biết \(3x^2+8x+4=0\)
b. Rút gọn B